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Abstract

We develop a sender/receiver game with many imperfectly informed and imperfectly

coordinated receivers. The sender can manipulate the receivers’ information at a cost,

but cannot commit to an information structure. The sender tries to prevent the receivers

from taking actions that align with the state of the world. This game has a unique

equilibrium. In that equilibrium, the receivers’ beliefs are unbiased but the sender

can still gain from the endogenous noise that is a byproduct of their manipulation.

The sender gains most when the receivers have intrinsically very precise information

but the sender’s costs of manipulation are low. In this situation, the receivers possess

information that is a very reliable guide to the truth but their actions do not reflect

it. In particular, when the costs of manipulation are negligible the sender manipulates

a lot and the receivers become unresponsive to their signals even though their signals

are intrinsically very precise. By contrast, if the costs of manipulation were high and

the receivers were sufficiently well-coordinated, the manipulation would backfire on

the sender. In this situation, the sender would want to commit to not manipulate

information. We give a political interpretation.
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1 Introduction

Consider a media establishment consisting of many journalists. Each individual journalist

would like to write reports that represent their best assessment of some contentious facts but

these journalists also like their reports to fit in with each other. Confronting the media is

a politician who seeks to prevent them from accurately reporting the facts. Can the politi-

cian achieve this goal? Even when the journalists are perfectly rational and understand the

politician’s incentives completely? Or will the politician’s strategy backfire leaving everyone,

including the politician, worse off? Should we be optimistic that new social media technolo-

gies will make it more difficult for a politician to stop the facts getting out? Or will these

new social media technologies make it too easy to spread “fake news” — creating confusion,

and leaving consumers of news no better informed?1

We develop a simple model to answer these questions. We find that the success or failure

of the politician’s media strategy depends crucially on the interaction of two features of the

environment: (i) the intrinsic, potential, precision of the media’s information, and (ii) the

costs the politician incurs in trying to achieve slanted media coverage — i.e., in propagating

“alternative facts”.2 We find that the politician’s media strategy is most successful when

the intrinsic precision of the media’s information is high and yet at the same time the cost

the politician incurs in trying to achieve slanted coverage is low. In this situation, individual

journalists possess information that is highly precise but the reports they write convey little

or no actual information. New media technologies that simultaneously improve the precision

of the journalists’ information and yet at the same time make it easy to spread fake news

end up making the politician better off and everybody else worse off.

Section 2 outlines the model. There is a single politician who knows the state of the

world. There are many imperfectly coordinated journalists with imperfect information about

the state of the world. The journalists try to write reports that align both with their individ-

ual beliefs about the true state of the world and with the reports of their fellow journalists.

The politician tries to prevent the journalists from accurately reporting the facts. In par-

ticular, the politician can distort the journalists’ signals about the state at a cost that is

increasing in the amount of slant they want to introduce. The journalists are perfectly ratio-

nal and internalize the politician’s incentives when forming their beliefs. To keep the model

tractable, we assume quadratic preferences and normal priors and signal distributions. We

study equilibria that are linear in the sense that journalists’ strategies are linear functions of

1For an overview of the role of social media in the 2016 US presidential election, see Allcott and Gentzkow
(2017) and Faris et al. (2017). In October 2017, representatives of Facebook, Google and Twitter were
called to testify before the US Senate on the use of their platforms in spreading fake news, including Russian
interference (e.g., Fandos et al., 2017). The role of social media and fake news has also been widely discussed in
the context of the 2016 UK “Brexit” referendum on leaving the European Union, the 2017 French presidential
elections, the 2017 Catalan independence crisis, etc. In November 2017, the European Commission announced
its intent to take action to combat the use of social media platforms to spread fake news (e.g., White, 2017).

2As per Kellyanne Conway’s use of the phrase on Meet the Press in January 2017. Handy (2017) provides
a forceful account of the relationship between the Trump administration and the US media.
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their signals. Section 3 solves this model when the politician cannot manipulate information.

This serves as a natural benchmark for the remaining analysis.

Section 4 solves the model when the politician can manipulate information and shows

that there is a unique (linear) equilibrium. In equilibrium, individual journalists have un-

biased beliefs and write unbiased reports. But these reports are noisier than they would

be absent manipulation. We find that if the journalists’ information is intrinsically precise

but the politician’s costs of manipulation are low, then there will be a sizeable gap between

the information content of the journalists’ reports absent manipulation and the equilibrium

information content of their reports in the presence of manipulation. Indeed, if the costs of

manipulation are negligible then the politician’s manipulation renders the journalists’ reports

completely uninformative even if the journalists’ information is arbitrarily precise.

Section 5 provides a welfare analysis. In the absence of manipulation, more precise in-

formation would make the politician worse off and make the journalists (and consumers who

value informative journalism) better off. We provide four welfare results in the presence of ma-

nipulation. First, when the journalists’ information is intrinsically precise but the politician’s

costs of manipulation are low then the politician indeed benefits from their manipulation. A

strong form of this is that if the politician’s costs of manipulation are negligible we find that

the politician can completely insulate themself from the consequences of intrinsically precise

information. Second, the manipulation can backfire on the politician. This happens when

the journalists’ information is intrinsically precise, the politician’s costs of manipulation are

high, and the journalists are sufficiently well coordinated. Third, the manipulation makes

the journalists unambiguously worse off. Fourth, when the costs of manipulation are low the

journalists become even worse off as their information becomes more precise.

Section 6 discusses our results. We interpret the rise of new social media technologies

as simultaneously increasing the intrinsic precision of information and reducing the politi-

cian’s costs of manipulation. New social media technologies like Facebook, Google, Twitter

and YouTube have facilitated the entry of new media outlets — thereby increasing the in-

trinsic (or potential) precision of information. But content on these platforms is usually

consumed in a feed that blurs the distinctions between media outlets in a way that makes

it easier for “fake news” and “alternative facts” to propagate — thereby reducing the costs

of information manipulation. Our model implies that simultaneously increasing the intrinsic

precision of information but decreasing the cost of manipulation tends to work to the advan-

tage of politicians with an interest in preventing accurate reporting and to the disadvantage

of everyone else. Section 7 offers some concluding remarks. All proofs are in the Appendix.

Strategic communication with costly talk. Our model is a sender/receiver game with

many imperfectly coordinated receivers. As in Crawford and Sobel (1982), the preferences

of the sender and receivers are not aligned and the sender is informed about the state of the

world. But we have costly talk, not cheap talk. As in Kartik (2009), our sender can send

distorted messages at a cost. By contrast with standard cheap talk models, our model with
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costly talk features a unique equilibrium. In the limit as the sender’s distortion become almost

costless, the unique equilibrium features a kind of babbling where the receivers ignore their

signals. Our model with costly talk is related to Kartik, Ottaviani and Squintani (2007) and

Little (2017) but our receivers are not “credulous” or subject to any kind of confirmation

bias. At the other extreme, if the sender’s distortion is infinitely costly then there is no

manipulation and our receivers play a coordination game as in Morris and Shin (2002).

Bayesian persuasion. In equilibrium, our receivers have unbiased posterior expectations.

Despite this, the sender still finds it optimal to send costly distorted messages. This is

because of the effects of their messages on other features of the receivers’ beliefs, as in the

Bayesian persuasion literature following Kamenica and Gentzkow (2011). In particular, the

sender can be made better off by the increase in the receivers’ posterior variance resulting

from the sender’s messages. A crucial distinction however is that in Kamenica and Gentzkow

(2011), the sender can commit to an information structure and this commitment makes the

model essentially nonstrategic in that their receiver only needs to solve a single-agent decision

problem. Other approaches to information design, such as Bergemann and Morris (2016) also

allow the sender to commit. By contrast, our sender cannot commit and chooses their message

after becoming informed about the state of the world, as in Crawford and Sobel (1982).

Applications to political communication that follow the Bayesian persuasion approach in

assuming the sender can commit include Hollyer, Rosendorff and Vreeland (2011), Gehlbach

and Sonin (2014), Gehlbach and Simpser (2015) and Rozenas (2016). Our model is more

similar to Little (2012, 2015) and Shadmehr and Bernhardt (2015) in that the sender cannot

commit and in some cases would find it valuable to commit to not manipulate information.

Other related work includes Egorov, Guriev and Sonin (2009), Edmond (2013), Lorentzen

(2014), Huang (2014), Chen and Xu (2014), and Guriev and Treisman (2015). For overviews

of this literature, see Svolik (2012) and Gehlbach, Sonin and Svolik (2016).

Media bias, fake news, and alternative facts. The media bias literature often assumes

that receivers prefer distorted information — e.g., Mullainathan and Shleifer (2005), Baron

(2006), Besley and Prat (2006), Gentzkow and Shapiro (2006), and Bernhardt, Krasa and

Polborn (2008). Allcott and Gentzkow (2017) have used this kind of setup to explain how

there can be a viable market for “fake news” that coincides with more informative, traditional

media (see also Gentzkow, Shapiro and Stone, 2015). To be clear, we view such behavioral

biases as very important. Our point is that such biases are not necessary for manipulation to

be effective. In our model, the sender can still gain from sending costly distorted messages

because of the endogenous noise that results from such messages.

Or to put things a bit differently, in our model no one is misled by the politician’s “alter-

native facts” and yet the politician can benefit greatly from the ensuing babble and tumult.
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2 Model

There is a unit mass of ex ante identical information receivers, indexed by i ∈ [0, 1], and a

single informed sender attempting to influence their beliefs.

Receivers’ payoffs. The receivers take actions ai ∈ R that balance two considerations: (i)

each receiver wants their action to align with the true underlying state θ ∈ R (about which

they are imperfectly informed), but also (ii) each receiver wants their action to align with

the population aggregate action A :=
∫ 1

0
ai di. In particular, as in Morris and Shin (2002),

each individual chooses ai to minimize the expected value of the quadratic loss

λ(ai − A)2 + (1− λ)(ai − θ)2 (1)

where the parameter λ ∈ [0, 1) measures the relative strength of the coordination motive. If

λ = 0, each individual receiver will set their ai equal to their expectation of θ without regard

to the actions (or beliefs) of other receivers. Alternatively, if λ→ 1, each individual receiver

will set their ai equal to their expectation of the aggregate action A and this will involve

determining the expectations of their fellow receivers.

In the special case where θ is known with certainty, the optimal action is

ai = λA+ (1− λ)θ (2)

Under certainty, in equilibrium each individual takes action ai = A = θ and thus in this

special case there is no tension between aligning with θ and aligning with the rest of the

population — i.e., in this special case, the population is perfectly coordinated on θ.

Sender’s payoffs and information manipulation. The sender knows the value of θ and

seeks to prevent the receivers from taking actions that accurately reflect the underlying state

θ. In particular, the sender obtains a gross benefit∫ 1

0

(ai − θ)2 di (3)

that is increasing in the dispersion of the actions ai around θ. The sender is endowed with a

technology that, in principle, gives it some influence over the receivers’ beliefs. Knowing θ,

the sender may take a costly action s ∈ R in an attempt to induce the receivers into believing

the state is actually y = θ + s, i.e., the term s = y − θ can be interpreted as the slant that

the sender is attempting to introduce. This manipulation incurs a quadratic cost c(y − θ)2,

similar to Holmström (1999) and Little (2012, 2015), so that the net payoff to the sender is

V =

∫ 1

0

(ai − θ)2 di− c(y − θ)2, c > 0 (4)

where the parameter c > 0 measures how costly it is for the sender to choose values of y

far from θ. The special case c → 0 corresponds to a version of cheap talk (i.e., the sender

can choose y arbitrarily far from θ without cost). The special case c→∞ corresponds to a

setting without manipulation (i.e., where the sender will always choose y = θ).
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Receivers’ information. The receivers know the sender’s objective but are imperfectly

informed about θ. The receivers begin with a common prior for θ. In particular, their prior

belief is that θ is distributed normally with mean z and precision αz > 0 (i.e., variance 1/αz).

Each individual receiver then draws an idiosyncratic signal

xi = y + εi = θ + s+ εi (5)

where the idiosyncratic noise εi is IID normal across receivers, independent of θ, with mean

zero and precision αx > 0 (i.e., variance 1/αx). In other words, receivers have one source of

information, the prior, that is free of the sender’s influence and another source of information,

the signal xi, that is not. While the informativeness of the prior is fixed, the informativeness

of the signal needs to be determined endogenously in equilibrium.

Equilibrium. A symmetric perfect Bayesian equilibrium of this model consists of individual

receiver actions a(xi, z) and beliefs, an aggregate action A(y, z) and the sender’s manipulation

y(θ, z) such that: (i) each receiver rationally takes the manipulation y(θ, z) into account when

forming their beliefs, (ii) each receiver’s action a(xi, z) minimizes their expected loss, (iii)

the aggregate action A(y, z) is consistent with the individual actions, and (iv) the sender’s

y(θ, z) maximizes the sender’s payoff given the individual actions.

Discussion. In our setup, the sender seeks to increase the dispersion of the receivers’

actions. This captures the idea that the sender seeks to prevent coordination among receivers.

Why would the sender want to do this? One example is a politician who wants to deligitimize

the media. For instance Klein (2017) argues that “Trump needs to delegitimize the media

because he needs to delegitimize facts” and that “The Trump administration is creating a

baseline expectation among its loyalists that they can’t trust anything said by the media”.

Another example is an autocrat who seeks to reduce the chances of an uprising. For instance:

“The documentary filmmaker Adam Curtis has described how Vladislov Surkov orchestrated

Putin’s media and political strategy [...] to deliberately confuse the population. [...] What’s

more Surkov made people aware of his manipulation so that it was impossible to know what

was real and fake.” (Till, 2016).

In our setup the sender has no “directional bias” in their preferences, i.e., they are not

trying to tilt the receivers’ beliefs towards some ideal point. If the sender had a known

directional bias (to the left or right, say), that would be easily extracted by the receivers in

forming their beliefs about θ and end up increasing the sender’s marginal costs but otherwise

leaving the analysis largely unchanged. We think of our setup as pertaining to the residual

uncertainty after known biases of the sender have been extracted.

Before characterizing equilibrium outcomes in the general model with information manip-

ulation, we first review equilibrium outcomes when there is no manipulation. This provides a

natural benchmark against which the sender’s technology for manipulation can be evaluated.
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3 Equilibrium without information manipulation

Suppose the sender cannot manipulate information — i.e., let c → ∞ so that the sender

always chooses y = θ. Then this model essentially reduces to the setting of Morris and Shin

(2002). The optimal action of a receiver with signal xi and prior z satisfies, in general,

a(xi, z) = λE[A(θ, z) |xi, z ] + (1− λ)E[ θ |xi, z ] (6)

In this linear-normal setup, each receiver’s posterior beliefs are also normal. In particular,

with y = θ a receiver with signal xi and prior z has posterior expectation

E[ θ |xi, z ] =
αx

αx + αz
xi +

αz
αx + αz

z (7)

and all receivers have posterior precision αx + αz.

Linear strategies. As in Morris and Shin (2002), we restrict attention to equilibria in

which the receivers use linear strategies of the form

a(xi, z) = kxi + hz (8)

for some coefficients k, h to be determined in equilibrium. Since y = θ the corresponding

aggregate action is likewise

A(θ, z) = kθ + hz (9)

Equilibrium in linear strategies. If other receivers use linear strategies, then from (6)

and (15), the optimal action of any individual receiver is

a(xi, z) = λ (kE[ θ |xi, z] + hz) + (1− λ)E[ θ |xi, z]

= (λk + 1− λ)
αx

αx + αz
xi +

(
(λk + 1− λ)

αz
αx + αz

+ λh

)
z (10)

Equating coefficients between (8) and (10) then allows us to solve for the equilibrium re-

sponses to the signal xi and prior z. In particular, equating the sums of the coefficients

k + h = (λk + 1− λ) + λh

so that k+h = 1. In short, actions simply have the form a(xi, z) = kxi + (1− k)z. Moreover

the coefficient k on the signal xi must satisfy the fixed-point condition

k = (λk + 1− λ)
αx

αx + αz
(11)

which has the unique solution

k∗ms =
(1− λ)αx

(1− λ)αx + αz
∈ (0, 1) (12)
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To interpret this formula, first observe that in the absence of the coordination motive

(λ = 0) each individual sets their action a(xi, z) = E[ θ |xi, z], i.e., they set their action equal

to their expectation of the underlying state. Thus in this case we have k∗ms = αx/(αx + αz),

the same weight as given to their signal xi in the posterior expectation (7), which depends

only on the precision of the signal relative to that of the prior, αx/αz. But in the presence

of the coordination motive, λ ∈ (0, 1), the weight on the signal xi gets reduced from αx to

(1 − λ)αx with the weight on the prior mean z correspondingly increased. In the presence

of the coordination motive, individual receivers are seeking to predict each others’ actions

and hence their common prior gets more weight than its precision alone warrants. If the

coordination motive is very strong (λ→ 1), each receiver completely ignores their individual

signal even if it is much more precise than the prior.

For future reference, let

k∗ms =
α

α + 1
, α := (1− λ)

αx
αz

> 0 (13)

The composite parameter α > 0 features repeatedly below. For brevity, we will refer to α as

measure of the relative precision of the signal xi to the prior z, though it also incorporates the

effects of the coordination motive via λ. The key thing is that the magnitude of α determines

how much receivers would respond to their signals if there is no manipulation.

4 Equilibrium with information manipulation

Now suppose the sender can manipulate information. In this setting the equilibrium fixed-

point problem is more complicated because we need to ensure that the receivers’ actions and

beliefs and the sender’s information manipulation are mutually consistent.

Preliminaries. We again restrict attention to equilibria in which the receivers use linear

strategies. We write these as

a(xi, z) = kxi + (1− k)z (14)

with coefficients summing to one. We show in the Appendix that this is without loss of

generality — in any such equilibrium, the coefficients in the receivers’ strategy will always

sum to one — and it streamlines the exposition to make use of this result from the start. As

a function of the sender’s y, the corresponding aggregate action is then

A(y, z) = ky + (1− k)z (15)
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4.1 Sender’s problem

Given that receivers use linear strategies a(xi, z) = kxi + (1− k)z, the sender’s problem is to

choose y ∈ R to maximize

V (y) =

∫ 1

0

(
k(y + εi) + (1− k)z − θ

)2
di− c(y − θ)2

= (ky + (1− k)z − θ)2 +
1

αx
k2 − c(y − θ)2 (16)

Taking the receivers’ response coefficient k as given, this is a simple quadratic optimization

problem. The solution is

y(θ, z) =
c− k
c− k2

θ +
k − k2

c− k2
z (17)

where the second-order condition requires

c− k2 ≥ 0 (18)

Given that receivers use linear strategies, it is optimal for the sender to use a linear strategy.

The coefficients in the sender’s strategy sum to one, so we can write

y(θ, z) = (1− δ)θ + δz (19)

where δ depends on the receivers’ response coefficient k via

δ(k) :=
k − k2

c− k2
, c− k2 ≥ 0 (20)

To interpret the sender’s strategy, observe that if, for whatever reason, the sender chooses

δ(k) = 0, then the sender is choosing a signal mean y that coincides with the true θ —

this corresponds to a situation where the sender chooses not to manipulate information and

the receivers’ signals xi are as informative as possible about the true θ (limited only by the

exogenous precision, αx). Alternatively, if the sender chooses δ(k) = 1, then the sender is

choosing a signal mean y that coincides with the receivers’ prior z — this corresponds to a

situation where the receivers’ signals xi provides no additional information about θ.

In short, the sender’s manipulation coefficient δ(k) summarizes the sender’s best response

to the receivers’ coefficient k. To construct an equilibrium, we need to pair this with the

receivers’ best response to the sender’s manipulation.

4.2 Receivers’ problem

To construct the receivers’ best response, first observe that the optimal action a(xi, z) for an

individual receiver with signal xi and prior z continues to satisfy

a(xi, z) = λE[A(θ, z) |xi, z] + (1− λ)E[ θ |xi, z]
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If other receivers use (14) and the sender uses (19) then the aggregate action is

A(θ, z) = ky(θ, z) + (1− k)z = k(1− δ)θ + (1− k(1− δ))z (21)

Collecting terms then gives

a(xi, z) = [1− λ(1− k(1− δ))]E[ θ |xi, z] + λ(1− k(1− δ))z (22)

(i.e., a weighted average of the posterior and prior expectations). To make further progress,

we need to determine this individual receiver’s posterior expectation E[ θ |xi, z] in the presence

of the sender’s manipulation strategy (19).

Signal extraction. If the sender’s manipulation strategy is (19), then each individual

receiver has two pieces of information: (i) the common prior z = θ + εz, where εz is normal

with mean zero and precision αz, and (ii) the idiosyncratic signal

xi = y(θ, z) + εi = (1− δ)θ + δz + εi

= θ + δεz + εi (23)

where the εi are IID normal with mean zero and precision αx. In short, the signal xi is

correlated with the prior via the common component εz. To extract the common component,

we construct a synthetic signal

si :=
1

1− δ (xi − δz) = θ +
1

1− δ εi (24)

The synthetic signal si is independent of the prior and normally distributed around the true

θ with precision (1− δ)2αx. If δ = 0, such that y(θ, z) = θ, there is no manipulation from the

sender and hence the synthetic signal si has precision αx, i.e., equal to the intrinsic precision

of the actual signal xi. If δ = 1, such that y(θ, z) = z, the signal xi is uninformative about θ

and the synthetic signal has precision zero.

Conditional on the synthetic signal si, an individual receiver has posterior expectation

E[ θ | si, z] =
(1− δ)2αx

(1− δ)2αx + αz
si +

αz
(1− δ)2αx + αz

z (25)

So in terms of the actual signal xi they have

E[ θ |xi, z] =
(1− δ)αx

(1− δ)2αx + αz
xi +

(
1− (1− δ)αx

(1− δ)2αx + αz

)
z (26)

Matching coefficients. We can then plug this formula for the posterior expectation back

into (22) and match coefficients to get the fixed-point condition

k = (λk(1− δ) + 1− λ)
(1− δ)αx

(1− δ)2αx + αz
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which has the unique solution

k(δ) :=
(1− δ)α

(1− δ)2α + 1
(27)

where α := (1− λ)αx/αz is the composite parameter introduced in (13) above.

In short, k(δ) gives us the unique value of k determined simultaneously by the receivers in

response to the sender’s δ. In this sense, we can say that k(δ) is the receivers’ best response

to the sender’s δ.

4.3 Equilibrium determination

To summarize, receivers have strategies of the form a(xi, z) = kxi+(1−k)z where the response

coefficient k is a function of the sender’s manipulation δ and the sender has a strategy of

the form y(θ, z) = (1 − δ)θ + δz where the manipulation coefficient δ is a function of the

receivers’ k. Think of these as two curves, k(δ) for the receivers and δ(k) for the sender.

Finding equilibria reduces to finding points where these two curves intersect. Let k∗ and δ∗

denote such equilibrium points.

A simplifying result. The receivers’ response coefficient k(δ) given in (27) admits any

δ ∈ R as an argument and in principle can take on both negative values and values larger

than one. Similarly, the sender’s manipulation coefficient δ(k) given in (20) admits any

k ∈ [−√c,+√c ] as an argument and in principle can take on both negative values and

values larger than one. It turns out that these cases can be ignored. In particular:

Lemma 1. In any equilibrium, the receivers’ k∗ ∈ [0, 1] and the sender’s δ∗ ∈ [0, 1].

In other words, the only possible crossing points of k(δ) and δ(k) are in the unit square. We

make use of this result to simplify much of the exposition below.

Receivers’ best response. We then have:

Lemma 2. The receivers’ best response k : [0, 1]→ R+ defined by

k(δ) :=
(1− δ)α

(1− δ)2α + 1
, δ ∈ [0, 1], α > 0 (28)

is first increasing then decreasing in δ with a single peak at δ = δ̂(α) given by

δ̂(α) :=


0 if α ≤ 1

1− 1/
√
α if α > 1

(29)

with boundary values k(0) = α/(α + 1) =: k∗ms and k(1) = 0.

Intuitively, we might expect that in the presence of manipulation the receivers are less

responsive to their signals xi than they would be absent manipulation. Lemma 2 tells us
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that this raw intuition is incomplete. If α ≤ 1 the maximum of k(δ) is obtained at the

boundary and so in this special case we get k(δ) < k∗ms, which agrees with the raw intuition.

But if α > 1 the maximum of k(δ) is obtained in the interior so that the receivers will have

k(δ) < k∗ms only when δ is sufficiently high. That is, if α > 1 then the sender will need to

choose a relatively large amount of manipulation if they want to achieve a reduction in the

receivers’ responsiveness, k(δ) < k∗ms.

Why might receivers be more responsive to their signals? Lemma 2 implies that

if α is relatively high and δ is relatively low, then the receivers will be more responsive to

their signals than they would be in the absence of manipulation. To understand why this

can happen, we need to decompose the effect of δ into two parts: (i) the effect of δ on the

precision of the synthetic signal si in (24), and (ii) the effect of δ on the correlation between

a receiver’s actual signal xi and their prior z. We will refer to the former as the “precision ”

effect and to the latter as the “correlation ” effect. From (24), the synthetic signal precision

is (1− δ)2αx and hence is unambiguously decreasing in δ. This reduction in precision acts to

decrease the receivers’ k. If this was the only effect the receivers’ response coefficient would

be unambiguously decreasing in δ (for any level of α), in line with the raw intuition. But

an increase in δ also increases the correlation between a receiver’s actual signal xi and their

prior z and the strength of this correlation effect depends on both α and δ. For α ≤ 1, the

precision effect unambiguously dominates so that k(δ) is strictly decreasing from k(0) = k∗ms
to k(1) = 0. For α > 1, the correlation effect dominates for low levels of δ while the precision

effect dominates for high levels of δ so that k(δ) increases from k(0) = k∗ms to its maximum

then decreases to k(1) = 0.

That said, the bottom line is that for high enough manipulation, it will indeed be the

case that the receivers are less responsive to their signals, k(δ) < k∗ms. This hurdle is easy to

clear when α is relatively low, but hard to clear when α is relatively high.

Sender’s best response. To characterize the sender’s best response, recall that the sender’s

second-order condition (18) requires that the receiver’s response coefficient k is in [−√c,+√c ].

Any other k leads the sender to choose the corner solution δ(k) = 0. Moreover, Lemma 1

tells us that in any equilibrium we must have k ∈ [0, 1] and δ(k) ∈ [0, 1] so that we can

further restrict attention to the interval

K(c) := { k : 0 ≤ k ≤ min[c, 1] }, c > 0 (30)

The upper bound k ≤ min[c, 1] comes from the fact that if c ≤ 1 then δ(k) ≤ 1 if and only

if k ≤ c. With this notation in hand, we have:
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Lemma 3. The sender’s best response δ : K(c)→ [0, 1] defined by

δ(k) :=
k − k2

c− k2
, k ∈ K(c), c > 0 (31)

is first increasing then decreasing in k with a single peak at k = k̂(c) given by

k̂(c) =


c if c ≤ 1

c−
√
c(c− 1) if c > 1

(32)

with boundary values δ(0) = 0 and δ(min[c, 1]) = 1.

This lemma says that if c ≤ 1 then the maximum of δ(k) is obtained at the boundary where

k = c and the sender’s manipulation is δ(c) = 1. Hence in this case, δ(k) is unambiguously

increasing in k. Intuitively, if the cost of manipulation is relatively low, then whenever the

receivers respond more to their signals, the sender will choose a higher level of manipulation.

But if instead c > 1 the maximum is obtained in the interior3 which means that for high

enough k the sender responds by choosing a lower level of manipulation δ(k).

Strategic complements and substitutes. To understand why it can be the case that

high values of the receivers’ response coefficient k can lead the sender to choose less ma-

nipulation, it’s instructive to revisit the sender’s problem in light of these strategies. Using

y = (1− δ)θ + δz the sender’s objective function (4) can be rewritten

V (δ; k) = (B(δ; k)− C(δ)) (z − θ)2 +
1

αx
k2 (33)

where

B(δ; k) := (kδ + 1− k)2, and C(δ) := cδ2 (34)

and we can view the sender’s problem as being equivalent to choosing δ ∈ [0, 1] to maximize

(33) taking k ∈ [0, 1] as given. Up to constants that do not matter for the optimal policy,

B(δ; k) is the gross benefit from choosing δ and C(δ) is the cost of it. Whether or not δ(k) is

increasing in k depends on whether δ and k are strategic complements or strategic substitutes

in (33). Since the cost C(δ) is independent of k, this is determined by the cross-derivative of

B(δ; k) alone. The marginal benefit can be written

∂B

∂δ
= 2(kδ + 1− k)k (35)

where kδ + 1 − k = 1 − (1 − δ)k measures the exposure of the aggregate action A to the

“aggregate noise” εz = z − θ, as in (21) above. Then differentiating the marginal benefit

with respect to k we can write the cross-derivative as proportional to

(kδ + 1− k)︸ ︷︷ ︸
effectiveness of exposing A to εz

− (1− δ)k︸ ︷︷ ︸
change in exposure of A to εz

(36)

3In this case the critical value k̂(c) = c−
√
c(c− 1) is strictly decreasing in c and hence k̂(c) < 1 for c > 1.
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There are two effects of k on the sender’s incentives: (i) if receivers put a higher weight on

their private signals, i.e., have a higher k, then a higher δ will be more effective at exposing A

to εz and this increases the marginal benefit of δ to the sender, but also (ii) a higher k reduces

the amount of exposure of A to εz and this decreases the marginal benefit of δ. When the

first effect dominates, δ and k are strategic complements and a higher value of k encourages

the sender to also choose a higher δ. But when the second effect dominates, δ and k are

strategic substitutes and a higher value of k encourages the sender to choose a lower δ.

When k is small (say k → 0), the first effect in (36) dominates regardless of δ. Likewise,

when δ is large (say δ → 1), the first effect in (36) dominates regardless of k. The second

effect can dominate, but only through some combination of k being high enough and δ being

low enough. More precisely, substituting δ(k) from (31) into (36) and rearranging, we find

that the second effect dominates if and only if

k > k̂(c) (37)

where k̂(c) is the critical value defined in (32) above. Roughly speaking, for low levels of the

cost of manipulation c, the sender will be inclined to choose high levels of δ so that for most

values of k the first effect dominates and δ(k) is increasing. For high levels of c, the sender

will be inclined to choose low levels of δ so that the second effect will dominate and δ(k) is

decreasing for high enough k.

4.4 Equilibrium uniqueness

With the receivers’ best response k(δ) and the sender’s best response δ(k) in hand, the first

main result of the paper is:

Proposition 1. There is a unique equilibrium, that is, a unique pair k∗, δ∗ simultaneously
satisfying the receivers’ k(δ) and the sender’s δ(k).

Figure 1 illustrates the result, with k plotted on the horizontal axis and δ plotted on the

vertical axis. In general, both these curves are non-monotone but they intersect once, pinning

down a unique pair k∗, δ∗ from which we can then determine the sender’s equilibrium strategy

y(θ, z) = (1− δ∗)θ + δ∗z and the receivers’ equilibrium strategy a(xi, z) = k∗xi + (1− k∗)z.

In equilibrium the sender is engaged in active information manipulation and the receivers

are making use of their signals despite that active manipulation. But this still leaves open

important questions. How large is the equilibrium amount of manipulation δ∗? Is it large

enough to induce the receivers to be less responsive to their signals, k∗ < k∗ms? To answer

these questions, we need to figure out how the equilibrium levels of k∗ and δ∗ vary with the

underlying parameters of the model.

4.5 Comparative statics

Our goal now is to show how the equilibrium levels of the receivers’ response k∗ and the

sender’s manipulation δ∗ vary with the underlying parameters of the model. There are two
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Figure 1: Unique equilibrium.

There is a unique equilibrium, that is, a unique pair k∗, δ∗ simultaneously satisfying the receivers’ best response k(δ) and the

sender’s best response δ(k). For α > 1 there is a critical point δ̂(α) such that the receivers’ k(δ) is increasing in δ for δ < δ̂. For

c > 1 there is a critical point k̂(c) such that the sender’s δ(k) is decreasing in k for k > k̂(c). Note that if c < 1 then k∗ ≤ c and
hence k∗ cannot be high if c is low.

parameters of interest, (i) the relative precision α := (1− λ)αx/αz > 0, which measures how

responsive individuals would be to their signals absent manipulation, and (ii) the sender’s

cost of manipulation c > 0.

To see how the equilibrium k∗ and δ∗ vary with α and c, observe from (28) that we can

write the receivers’ best response as k(δ;α) independent of the sender’s cost c. Likewise,

from (31) we can write the sender’s best response as δ(k; c) independent of the relative

precision α. The unique intersection of these curves, as shown in Figure 1, determines the

equilibrium coefficients k∗(α, c) and δ∗(α, c) in terms of these parameters. Since α enters

only the receivers’ best response, changes in α shift the receivers’ best response k(δ;α) along

an unchanged δ(k; c) for the sender. Likewise, since c enters only the sender’s best response,

changes in c shift the sender’s best response δ(k; c) along an unchanged k(δ;α) for the sender.

With these observations in hand, we can derive the main comparative statics of the model.

Relative precision. Changes in the relative precision α > 0 have the following effects:

Lemma 4.

(i) The receivers’ equilibrium response k∗(α, c) is strictly increasing in α.

(ii) The sender’s equilibrium manipulation δ∗(α, c) is strictly increasing in α if and only if

α < α̂(c) (38)

where α̂(c) is the smallest α such that k∗(α, c) ≥ k̂(c).
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Figure 2: Changes in the relative precision, α.

Receivers’ equilibrium response k∗ (left panel) and sender’s equilibrium manipulation δ∗ (right panel) as functions of the relative
precision α for various levels of the cost of manipulation c. The receivers’ k∗ is monotone increasing in α and asymptotes to
min[c, 1] as α → ∞. If c < 1 then k∗ and δ∗ are strategic complements for the sender, so δ∗ increases with k∗ as α rises and

asymptotes to one as k∗ → c. If c > 1 then for high enough α we have k∗ > k̂(c) so that k∗ and δ∗ become strategic substitutes
for the sender at which point δ∗ starts to decrease and asymptotes to zero as k∗ → 1.

For any given level of the sender’s manipulation δ ∈ (0, 1), a marginal increase in the

relative precision α makes the receivers more responsive to their signals so that k(δ;α) shifts

out along the sender’s δ(k; c) thereby increasing k at every δ and hence unambiguously

increasing k∗. The effect on the sender’s manipulation then hinges on whether or not k and

δ are strategic complements in equilibrium — i.e., whether the sender’s best response δ(k; c)

is increasing or decreasing in k at the equilibrium k∗ and δ∗. Then using Lemma 3 we say

that k∗ and δ∗ are strategic complements in equilibrium when α and c are such that

k∗(α, c) < k̂(c) (39)

In terms of primitives, if c < 1 then from Lemma 3 we know that k ≤ c = k̂(c) so it is surely

the case that k and δ are strategic complements for the sender and so, as functions of α, the

equilibrium k∗ and δ∗ increase or decrease together. Alternatively, if c > 1, then whether

or not k and δ are strategic complements also depends on the level of k∗, which depends

on the level of α. If α is low then k∗ will also be low so that k∗ and δ∗ remain strategic

complements and therefore increase or decrease together following a change in α. But if α

is high enough to make k∗ and δ∗ strategic substitutes then k∗ and δ∗ will move in opposite

directions following a change in α. Figure 2 illustrates.

Cost of manipulation. Changes in the cost c > 0 have the following effects:
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Lemma 5.

(i) The sender’s equilibrium manipulation δ∗(α, c) is strictly decreasing in c.

(ii) The receivers’ equilibrium response k∗(α, c) is strictly increasing in c if and only if

c < ĉ(α) (40)

where ĉ(α) is the smallest c such that δ∗(α, c) ≤ δ̂(α).

0 1 2 3 4 5
0

1
response k∗

k∗ms

k∗ms

α < 1

α > 1

cost of manipulation, c

0 1 2 3 4 5
0

1
manipulation δ∗

α < 1

α > 1

cost of manipulation, c

Figure 3: Changes in the sender’s cost of manipulation c.

Receivers’ equilibrium response k∗ (left panel) and sender’s equilibrium manipulation δ∗ (right panel) as functions of the sender’s
cost of manipulation c for various levels of the relative precision α. The sender’s δ∗ is monotone decreasing in c and asymptotes
to zero as c→∞. If α < 1, the precision effect dominates so that as δ∗ decreases the receivers’ k∗ increases and asymptotes to
k∗ms from below as c→∞. If α > 1 then for high enough c we have δ∗ < δ̂(α) so that the correlation effect begins to dominate
at which point k∗ starts to decrease and asymptotes to k∗ms from above as c→∞.

For any given level of the receivers’ k ∈ (0, 1), a marginal increase in the cost c decreases

the sender’s incentive to manipulate so that δ(k; c) shifts down along the receivers’ k(δ;α)

thereby decreasing δ at every k and hence unambiguously decreasing δ∗. The effect on the

receivers’ k then hinges on whether or not, in equilibrium, the precision effect is larger than

the correlation effect — i.e., whether the receivers’ k(δ;α) is increasing or decreasing in δ at

the equilibrium k∗ and δ∗. Then using Lemma 2 we say that the precision effect dominates

in equilibrium when α and c are such that

δ∗(α, c) > δ̂(α) (41)

In terms of primitives, if α ≤ 1 then from Lemma 2 we know that the precision effect

dominates so that the receivers’ k(δ;α) curve is decreasing and so, as functions of c, the

equilibrium k∗ and δ∗ move in opposite directions following a change in c. Alternatively, if

α > 1, then whether the precision or correlation effect dominates also depends on the level
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of δ∗, which depends on the level of c. If c is low, then δ∗ will be high so the precision effects

continues to dominate meaning that k∗ and δ∗ move in opposite directions following a change

in c. But if c is high enough to make δ∗ low, then the correlation effect will dominate and k∗

and δ∗ will move in the same direction following a change in c. Figure 3 illustrates.

When is k∗ less than k∗ms? Lemma 4 tells us that the receivers’ responsiveness k∗ is

increasing in the relative precision α. But since the benchmark responsiveness k∗ms = α/(α+1)

is also increasing in α, this does not yet tell us whether in equilibrium k∗ is less or more than

k∗ms. In the following lemma, we provide a simply necessary and sufficient condition for

k∗ < k∗ms. In particular:

Lemma 6. Receivers are less responsive to their signals with manipulation

k∗(α, c) < k∗ms(α) if and only if c < c∗ms(α) (42)

where

c∗ms(α) =


α

α− 1

(
α

α + 1

)2

if α > 1

+∞ if α ≤ 1

(43)

In other words, if α ≤ 1 then we know that k∗ < k∗ms regardless of c but if α > 1 then

whether or not the receivers’ k∗ is less than k∗ms does depend on c. The key to this result is

Lemma 2 which tells us that in order for k(δ) < k∗ms it must be the case that the sender has

manipulation δ that is sufficiently large, in particular, must have manipulation

δ > 1− 1/α

(which is trivial if α ≤ 1). Hence if α and c are such that δ∗(α, c) > 1 − 1/α then in

equilibrium the sender is indeed choosing enough manipulation that the receivers become

less responsive, k∗ < k∗ms. For α > 1, the critical cost c∗ms(α) given in (43) is the unique c

that delivers δ∗(α, c) = 1− 1/α.

With this simple formula for c∗ms(α) in hand, we know that for pairs α and c such that

c < c∗ms(α) the receivers are less responsive to their signals than they would be absent

manipulation. For pairs α and c such that c > c∗ms(α), the receivers are more responsive

to their signals than they would be absent manipulation. Graphically, the function c∗ms(α)

is at first steeply decreasing in α, crosses c∗ms(α) = 1 and then reaches a minimum before

increasing again, approaching c = 1 from below as α → ∞. Thus in the limit as α → ∞,

the question of whether or not the equilibrium k∗ is less than k∗ms reduces to whether or not

the cost parameter c is more or less than 1. If c < 1 then in this limiting equilibrium the

receivers are less responsive to their signals than they would be absent manipulation but if

c > 1 then they are more responsive.
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Fundamental vs. strategic uncertainty. This limiting equilibrium also provides a sim-

ple characterization of the size of the change in the receivers’ responsiveness k∗ms − k∗. In

particular, as α→∞ we have k∗ → min[c, 1] and k∗ms → 1 so that:

Remark 1. As signals become arbitrarily precise, the change in the receivers’ equilibrium
responsiveness is

lim
α→∞

(
k∗ms − k∗

)
=


1− c if c < 1

0 if c > 1
(44)

while the equilibrium amount of manipulation is

lim
α→∞

δ∗ =


1 if c < 1

0 if c > 1
(45)

In this limit, there is no fundamental uncertainty in the sense that, absent manipulation,

all receivers would respond one-for-one to their signals. The limit α → ∞ corresponds to a

scenario where the underlying information environment is benign for the receivers. But in

the presence of manipulation there remains strategic uncertainty even as α→∞. The conse-

quences of this strategic uncertainty depend on how costly it is for the sender to manipulate.

If the cost is relatively high, c > 1, then the limiting equilibrium features no manipulation

(δ∗ = 0) and receivers that are fully responsive to their signals (k∗ = 1). But if the cost is

relatively low, c < 1, then the limiting equilibrium features full manipulation (δ∗ = 1) and

receivers that are less-than-fully responsive to their signals (k∗ = c < 1).4

Nearly cheap talk. Now consider the further special case that c→ 0 so that the sender’s

manipulation is nearly costless. Then with arbitrarily precise signals, we have k∗ → c with

c → 0 so that in this nearly cheap talk limit the receivers do not respond to their signals at

all, k∗ → 0. By contrast, in the absence of manipulation they would respond with k∗ms → 1.

This combination of c→ 0 with α→∞ gives the largest possible reduction in the receivers’

responsiveness to their signals, and this will turn out to be the situation where the sender

gains the most from their technology for manipulation.

The key point is that a combination of high α with low c allows the sender to achieve a large

reduction in the receivers’ responsiveness. This is because, although the intrinsic precision

of the signals is high, the low cost of manipulation c makes k∗ and δ∗ strategic complements

for the sender so that high α also implies high δ∗, thereby reducing the equilibrium precision

of the receivers’ signals. In the limit as α → ∞ with c → 0, the receivers end up making

decisions based on their prior alone even though their signals are intrinsically precise.

4We discuss the knife-edge case c = 1 in the Appendix.
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5 Welfare analysis

Our goal now is to establish the conditions under which the sender is made better off from

their ability to manipulation and the conditions under which the receivers’ are made worse

off by the sender’s manipulation.

5.1 Sender’s payoff with and without manipulation

Preliminaries. Let V (δ, k) denote the sender’s ex ante expected utility if they choose

manipulation δ when the receivers have response k. Taking expectations of (33) with respect

to the prior that θ is normally distributed with mean z and precision αz we get, in slight

abuse of notation,

V (δ, k) =
1

αz
(B(δ, k)− C(δ)) +

1

αx
k2 (46)

where, as before, B(δ, k) = (kδ + 1− k)2 and C(δ) = cδ2 capture the sender’s gross benefits

and cost of manipulation.

Observe that whereas the equilibrium responsiveness of the receivers k∗ and the manipu-

lation of the sender δ∗ depend only on the composite parameter α := (1− λ)αx/αz and the

cost of manipulation c, the payoffs for the sender depend on the actual levels of the intrinsic

signal precision αx and the prior precision αz separately.

Payoff without manipulation, v∗ms. Now consider the special case where the sender

cannot manipulate information, δ = 0. If the receivers have response coefficient k then the

sender has expected utility

vms(k) := V (0, k) =
1

αz
(B(0, k)− C(0)) +

1

αx
k2 (47)

which simplifies to

vms(k) =
1

αz
(1− k)2 +

1

αx
k2 (48)

This is a quadratic in k and decreases from vms(0) = 1/αz till it reaches its global minimum

at k = αx/(αx +αz) before increasing again to vms(1) = 1/αx. The benchmark payoff for the

sender is the function vms(k) evaluated at the point k = k∗ms. Using k∗ms := α/(α + 1) and

α = (1− λ)αx/αz, this works out to be

v∗ms =
(1− λ)2αx + αz

((1− λ)αx + αz)2
(49)

The sender’s benchmark payoff v∗ms is decreasing in the intrinsic signal precision αx, increasing

in the receivers’ preference for coordination λ, and decreasing in prior precision αz so long

as the prior is not too diffuse. We now need to compare the sender’s benchmark payoff v∗ms
to their payoff when they can manipulate information.
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Payoff with manipulation, v∗. Turning now to the general case where the sender can

manipulate information, let v(k) and δ(k) denote the sender’s maximum value function and

best response if the receivers have response coefficient k, namely

v(k) := max
δ∈[0,1]

V (δ, k), δ(k) := argmax
δ∈[0,1]

V (δ, k) (50)

Using the fact that δ(k) = (k−k2)/(c−k2), as in (31) above, the value function evaluates to

v(k) =
1

αz
(1− k)2

(
c

c− k2

)
+

1

αx
k2, c− k2 ≥ 0 (51)

Let v∗ = v(k∗) denote the sender’s equilibrium payoff with manipulation.

Main properties of v∗ and v∗ms. With these definitions in hand, we can show that:

Lemma 7.

(i) The sender’s payoff with and without manipulation, v∗ and v∗ms, are both strictly de-
creasing in the intrinsic signal precision αx.

(ii) The sender’s payoff has limits

lim
αx→0+

v∗ = lim
αx→0+

v∗ms =
1

αz
(52)

lim
αx→∞

v∗ = max

[
0 ,

1− c
αz

]
and lim

αx→∞
v∗ms = 0 (53)

Both v∗ and v∗ms depend on the intrinsic signal precision αx directly and also indirectly

through the receivers’ response coefficient. In both scenarios, the direct effect of increasing

αx is to reduce the sender’s payoff — since a higher αx makes the receivers’ signals xi more

clustered around the true θ and for a given k this makes the receivers’ actions ai also more

clustered, which reduces the sender’s payoff. Likewise in both scenarios, the indirect effect

of increasing αx is to increase the receivers’ k which also reduces the sender’s payoff. Hence

unambiguously an increase in αx reduces the sender’s payoff in both scenarios. But the

magnitude of the reduction in the sender’s payoff differs across these scenarios and depends

sensitively on the sender’s costs c. In particular, if c < 1 then v∗ asymptotes to the constant

(1 − c)/αz > 0 as αx → ∞ whereas v∗ms asymptotes to zero. If instead c > 1, then both v∗

and v∗ms asymptote to zero.

Comparison of v∗ and v∗ms. How does the level of v∗ compare to the benchmark payoff

absent manipulation, v∗ms? Since v(k) is the maximum value function, for any particular

response k we know that

v(k) := max
δ∈[0,1]

V (δ, k) ≥ V (0, k) =: vms(k) (54)
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But this does not guarantee that the sender gains from manipulation. The receivers’ response

k∗ generally differs from the level of responsiveness they would have absent manipulation,

k∗ms. And because of this, v∗ can likewise be either less than or more than v∗ms. In short, the

technology for manipulating information need not make the sender better off.

For future reference we decompose the sender’s gain from manipulation as follows:

v∗ − v∗ms = (v(k∗)− vms(k∗)) + (vms(k
∗)− vms(k∗ms)) (55)

This leads to the following sufficient conditions for the sender to gain from their manipulation:

Proposition 2.

(i) The sender gains from manipulation v∗ > v∗ms, if either c < c∗ms(α) or λ < 1/2.

(ii) In the limit as αx →∞, the sender’s gain from manipulation is

lim
αx→∞

(v∗ − v∗ms) =


1− c
αz

if c < 1

0 if c > 1

(56)

The first part of the proposition uses the fact that v(k) ≥ vms(k) for all k and hence the

first term in (55) is unambiguously positive. So for the sender to gain it is sufficient that

that the second term in (55) is also positive. Since vms(k) is strictly decreasing on (0, k∗ms)

the second term is positive if k∗ < k∗ms. In short, if k∗ < k∗ms then v∗ > v∗ms. In turn, Lemma

6 tell us that k∗ < k∗ms if and only if c < c∗ms(α) where c∗ms(α) is the critical cost given in

equation (43) above. This is only a sufficient condition, however. Even if k∗ > k∗ms it can

still be the case that v∗ > v∗ms. For example, in the special case that λ = 0 the benchmark

response coefficient k∗ms turns out to be the minimizer of vms(k) so that v∗ms ≤ vms(k) for

all k. Consequently, if λ = 0 we still have v∗ > v∗ms even if k∗ > k∗ms. More generally, so

long as the receivers’ coordination motive is relatively weak, λ < 1/2, then the benchmark

payoff v∗ms is sufficiently low that v∗ is greater than v∗ms even if k∗ > k∗ms. The second part of

the proposition simply uses Lemma 7 to conclude that the gain from manipulation v∗ − v∗ms
asymptotes to (1− c)/αz if c < 1 but asymptotes to zero if c > 1.

Figure 4 illustrates, showing v∗ and v∗ms as functions of αx for various levels of c. Both

v∗ and v∗ms are monotonically decreasing in αx starting from the common initial point 1/αz

when αx = 0. For low levels of αx we know k∗ < k∗ms and hence for low levels of αx we have

v∗ > v∗ms even as both v∗ and v∗ms decrease. Now consider the limiting case as αx → ∞.

If the sender cannot manipulate, then we get k∗ms → 1 so that the sender’s benchmark

payoff is driven to v∗ms → 0, the worst possible outcome for the sender. But if the sender

can manipulate, then we get k∗ → min[c, 1] so that if c < 1 the receiver’s responsiveness

asymptotes to k∗ = c < k∗ms which opens up a permanent payoff gap between the two

scenarios. In particular, if the cost of manipulation is relatively low, c < 1, then the sender’s

payoff asymptotes to v∗ = (1− c)/αz > v∗ms and the sender gains from manipulation.
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Figure 4: Sender gains most when αx high and c low.

Sender’s equilibrium payoff v∗ (left panel) and gain from manipulation v∗ − v∗ms (right panel) as functions of the intrinsic
precision αx for various levels of the cost of manipulation c. Both v∗ and v∗ms are monotonically decreasing in αx and v∗ms

asymptotes to zero as αx → ∞. If c > 1, then v∗ also asymptotes to zero and the sender’s manipulation backfires, v∗ < v∗ms,
for high αx. But if c < 1 then v∗ asymptotes to (1 − c)/αz > 0 as αx → ∞ and the sender gains, v∗ > v∗ms, for high αx. In
this sense, the sender gains when αx is high and c is low.

Nearly cheap talk limit. To appreciate the potential magnitude of the gain from manip-

ulation, observe that for any configuration of parameters we have

v∗ ≤ v(0) =
1

αz
(57)

In this sense, the best possible payoff the sender can obtain is 1/αz. This payoff can be

obtained if αx = 0, in which case k∗ = 0 and receivers make decisions based only on their

prior, which has precision αz. In the absence of manipulation, this αx = 0 scenario is the only

way for the sender to get a payoff of 1/αz. But in the presence of manipulation, this payoff

can also be obtained even as αx → ∞. Indeed we have just seen that if c < 1 then in the

limit as αx → ∞ the sender’s payoff approaches v∗ = (1− c)/αz. Thus if in addition c → 0

we get v∗ → 1/αz. So in this nearly cheap talk limit, the sender is obtaining its best possible

payoff 1/αz, the same as it would have if αx = 0, even though αx → ∞. Put differently, if

the cost of manipulation is low enough, then the sender is able to effectively insulate itself

from the consequences of receivers having intrinsically precise signals.

Manipulation can backfire. The combination of high αx and low c tends to make the

sender better off when they can manipulate information. But they are not always better off.

As shown in Figure 4, when αx is high and c is high then we have both v∗ and v∗ms approaching

zero but with v∗ < v∗ms for sufficiently high αx. For these parameters, the sender’s ability

to manipulate information backfires in the sense that the sender would be better off if they

could credibly commit to not use their manipulation technology. More precisely:
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Proposition 3. For each c > 1 and λ > 1/2 there exists a critical point

α∗x >

(
1 +
√

5

2

)(
αz

1− λ

)
(58)

such that the sender’s manipulation backfires, v∗ < v∗ms, for all αx > α∗x.

To understand this condition, first observe from Proposition 2 that c > c∗ms(α) and λ >

1/2 are necessary conditions for the sender’s manipulation to backfire, v∗ < v∗ms. Moreover,

using the formula for c∗ms(α) in (43) it can be shown that whenever the composite parameter

α is greater than the constant (1 +
√

5)/2 ≈ 1.62 the critical cost is c∗ms(α) < 1 so that c > 1

suffices for c > c∗ms(α). So the proposition says that if these necessary conditions are met,

a sufficient condition for the sender’s manipulation to backfire is for αx to be large enough,

αx > α∗x. Asymptotically, the sender’s loss from this backfiring is negligible in that both

v∗ = v∗ms = 0. But for more moderate levels of αx the loss can be substantial.

A simple taxonomy. To summarize, the sender’s payoffs are at their highest v∗ = v∗ms =

1/αz when the intrinsic signal precision is low, αx = 0. When the intrinsic signal precision is

high, αx →∞ we get v∗ = v∗ms = 0 if c > 1 but v∗ = (1− c)/αz > v∗ms if c < 1. In this sense,

the sender experiences large gains when αx is high and c is low.

5.2 Receivers’ loss with and without manipulation

Preliminaries. We measure the receivers’ welfare using their ex ante expected loss. Let

L(k, δ) denote their expected loss if they have response k when the sender chooses manipu-

lation δ. This works out to be

L(k, δ) =
1− λ
αz

B(δ, k) +
1

αx
k2 (59)

where B(δ, k) = (kδ + 1 − k)2 is the sender’s gross benefit from manipulation (which tends

to raise the receivers’ loss).

Loss without manipulation, l∗ms. Now consider the special case where the sender cannot

manipulate information, δ = 0. The receivers then have expected loss

lms(k) := L(k, 0) =
1− λ
αz

(1− k)2 +
1

αx
k2 (60)

Evaluating at k = k∗ms and using k∗ms := α/(α + 1) and α := (1− λ)αx/αz, this is

l∗ms =
(1− λ)

(1− λ)αx + αz
(61)
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Loss with manipulation, l∗. Turning now to the general case where the sender can

manipulate information, let l(δ) and k(δ) denote the receivers’ minimum loss function and

best response if the sender has manipulation coefficient δ, namely

l(δ) := min
k∈[0,1]

L(k, δ), k(δ) := argmin
k∈[0,1]

L(k, δ) (62)

Using the solution for k(δ) from (28) above and α := (1− λ)αx/αz this evaluates to

l(δ) =
(1− λ)

(1− δ)2(1− λ)αx + αz
(63)

Let l∗ = l(δ∗) denote the receivers’ equilibrium loss with manipulation.

Main properties of l∗ and l∗ms. With these definitions in hand, we can show that:

Lemma 8.

(i) The receivers’ loss without manipulation l∗ms is strictly decreasing in αx.

(ii) The receivers’s loss with manipulation l∗ is strictly decreasing in the intrinsic signal
precision αx if c > 1, but for each c < 1 there is a critical point α∗∗x such that l∗ is
strictly decreasing for αx < α∗∗x and strictly increasing for αx > α∗∗x .

(iii) The receivers’ loss has limits

lim
αx→0+

l∗ = lim
αx→0+

l∗ms =
1− λ
αz

(64)

lim
αx→∞

l∗ =


1− λ
αz

if c < 1

0 if c > 1

and lim
αx→∞

l∗ms = 0 (65)

In both scenarios, the direct effect of increasing αx is to reduce the receivers’ loss — since

a higher αx increases the precision of their estimates of θ allowing them to take actions that

are closer to θ and also to take actions that are closer to one another, both of which reduce

their loss. When the sender can manipulate, there is an additional indirect effect from δ∗

with higher values of δ∗ increasing the receivers’ loss. As shown in Lemma 4, the sender’s

manipulation can be either increasing or decreasing in the intrinsic precision, depending on

whether the receivers’ k∗ and the sender’s δ∗ are strategic complements or not. In particular,

if the sender’s costs of manipulation are low, c < 1, then k∗ and δ∗ are strategic complements

so that increasing αx increases both k∗ and δ∗ together. There is then a critical point α∗∗x
such that for αx > α∗∗x the indirect effect of αx via δ∗ is strong enough to overcome the direct

effect so that overall l∗ is increasing in αx even though l∗ms is unambiguously decreasing. By

contrast, if δ∗ and k∗ are strategic substitutes then δ∗ is decreasing in αx so that the indirect

and direct effects of increasing αx work together to reduce the receivers’ loss.
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Comparison of l∗ and l∗ms. Since in equilibrium the sender’s manipulation δ∗ ∈ [0, 1] and

the function l(δ) is strictly increasing in δ we immediately have:

Proposition 4. The receivers are worse off with manipulation, l∗ ≥ l∗ms, strictly if δ∗ > 0.

So the only question for the receivers is just how much worse off will they be?

Proposition 5.

(i) For each c < 1 there is a critical point α∗∗x such that the receivers’ excess loss from
manipulation l∗ − l∗ms is strictly increasing for αx > α∗∗x .

(ii) In the limit as αx →∞, the receivers’ excess loss from manipulation is

lim
αx→∞

(l∗ − l∗ms) =


1− λ
αz

if c < 1

0 if c > 1

(66)

Since l∗ms is strictly decreasing in αx, the excess loss from manipulation l∗ − l∗ms will

certainly be increasing if l∗ is increasing in αx. From Lemma 8 we know that l∗ is strictly

increasing if c < 1 and αx > α∗∗x . With this parameter configuration, the indirect effect of αx

via the sender’s manipulation δ∗ is large enough that the receivers are not just worse off with

manipulation but are becoming increasingly worse off as αx increases. If c < 1, the receivers’

loss from manipulation asymptotes to (1 − λ)/αz > 0 as αx → ∞, i.e., the same loss the

receivers would have if αx = 0. By contrast, if c > 1 then even though l∗ > l∗ms for all αx the

gap between them becomes negligible as αx →∞.

Figure 5 illustrates, showing l∗ and l∗ms as functions of αx for various levels of c. Both

start from the common initial point (1 − λ)/αz when αx = 0 and are initially decreasing in

αx. If c < 1 then for high enough αx > α∗∗x the strategic complementarity effect is large

enough to dominate and l∗ begins to increase in αx. In this scenario, as αx → ∞ we have

δ∗ → 1 and the receivers’ loss is driven all the way back up to l∗ = (1 − λ)/αz so that the

receivers obtain no benefit from the high level of intrinsic signal precision αx. Put differently,

when αx is high and c is low then the sender chooses high δ∗ and the equilibrium precision

of the receivers’ signals is low so they make decisions based primarily on their prior and

receive payoffs commensurate with the informativeness of their prior. In this sense, the

receivers experience large losses from manipulation when αx is high and c is low, i.e., the

same circumstances as when the sender experiences large gains.

Jumps in the receivers’ loss. Notice that in Proposition 5, the receivers’ asymptotic loss

is discontinuous in c in the vicinity of c = 1. A small decrease in costs from c = 1 + ε to

c = 1 − ε increases the asymptotic loss sharply from 0 to (1 − λ)/αz > 0 (i.e., all the way

back to the loss they would have with intrinsically uninformative signals, αx = 0). We show
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Figure 5: Receivers lose most when αx high and c low.

Receivers’ equilibrium loss l∗ (left panel) and excess loss l∗ − l∗ms (right panel) as functions of the intrinsic precision αx for
different levels of the cost of manipulation c. If c > 1 then l∗ is monotonically decreasing in αx and asymptotes to zero as
αx →∞. If c < 1 then for high enough αx the receivers’ loss l∗ is increasing in αx and asymptotes to (1− λ)/αz as αx →∞.
For αx > 4αz/(1 − λ) the receivers’ loss is discontinuous in c at c = 1. A small decrease from c = 1 + ε to c = 1 − ε causes a
discrete jump up in the receivers’ loss.

in the Appendix that this discrete jump reflects a corresponding jump in the sender’s δ∗ in

the vicinity of c = 1.

This jump in the receivers’ loss in the vicinity of c = 1 is present for a large range of αx

and is not an artefact of the limit as αx →∞. In fact:

Remark 2. For each α > 4, the receivers’ loss l∗ is discontinuous in c at c = 1. An
ε-reduction from c = 1 + ε to c = 1− ε causes the receivers’ loss to jump up from

l∗ := lim
c→1+

l∗ =
1− λ
αz

1 + α

(
1 +

√
1− (4/α)

2

)2
−1

to

l
∗

:= lim
c→1−

l∗ =
1− λ
αz

1 + α

(
1−

√
1− (4/α)

2

)2
−1

As explained in the Appendix, to get the jump we need the composite parameter α > 4.

Equivalently, we need the intrinsic signal precision αx > 4αz/(1− λ). Observe that holding

αz and λ fixed and taking αx → ∞ the limits become l∗ → 0 and l
∗ → (1 − λ)/αz so that

“at αx =∞” the jump is from 0 to (1− λ)/αz, as in Proposition 5 above.

Manipulation is not zero-sum. Receivers are always worse off with manipulation but,

depending on parameters, the sender can be worse off too. Hence there are circumstances in
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which both the receivers and the sender are worse off and hence the effects are not zero-sum.

Even when the sender gains, the size of the sender’s gains do not generally correspond to the

size of the receivers’ losses.

6 Implications of the model

We now discuss some key implications of our model. For this discussion, we suppose that the

sender is a politician who seeks to influence the beliefs of a group of imperfectly informed

receivers. We begin with an application of the model that interprets new social media tech-

nologies as changing both the intrinsic precision of information and the politician’s costs of

manipulation. We then discuss how the information manipulation technology in our model

accords with the kinds of political messaging that are common in practice.

6.1 The challenge of social media technologies

Our goal now is to interpret the impact of new social media technologies using our model.

Pessimism and optimism about media technologies. The strategic use of information

manipulation, whether it be blatant propaganda or more subtle forms of misdirection and

obfuscation, is a timeless feature of human communication. The role that new technologies

play in either facilitating or impeding this information manipulation is widely debated and

optimism or pessimism on this issue seems to fluctuate as new technologies develop. For

example, in the postwar era a pessimistic view emphasized the close connections between

mass media technologies like print media, radio and cinema and the immersive propaganda

of totalitarian regimes (e.g., Friedrich and Brzezinski, 1965; Arendt, 1973; Zeman, 1973).

But in the 1990s and 2000s, a more optimistic view stressed the potential benefits of the

internet and other, relatively more decentralized methods of communication, in undermining

attempts to control information. This optimism seems to have reached its zenith during the

“Arab Spring” protests against autocratic regimes in Tunisia, Egypt, Libya and elsewhere

beginning in 2010. But increasingly the dominance of new social media platforms like Google,

Facebook, Twitter and YouTube has led to renewed pessimism about the implications of new

media technologies (e.g., Morozov, 2011). In particular, the apparent role of such platforms

in facilitating the spread of misleading information during major political events like the 2016

US presidential election and the 2016 UK referendum on leaving the European Union, has

led to newly intense scrutiny of social media technologies (e.g., Faris et al., 2017).

Important features of social media technologies. As emphasized by Allcott and

Gentzkow (2017), these new social media technologies have two features that are particu-

larly relevant. First, they have low barriers to entry and it has become increasingly easy

to commercialize social media content through tools like Google’s AdWords and Facebook
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advertising. This has meant a proliferation of new entrants that have been able to establish a

viable market for their content. Second, content on these platforms — both from traditional

media outlets like the New York Times and CNN, as well as from relatively new outlets like

Buzzfeed and the Huffington Post, Breitbart and the Daily Caller — is largely consumed on

mobile devices, in narrow slices, with frequent hot takes, snippets of streaming video and the

like, all of which serves to blur the distinctions between traditional media outlets and their

new competitors and to blur the distinctions between reporting and opinion.

In the context of our model, we interpret these two features as follows. First, we interpret

these new social media technologies as facilitating the entry of new media outlets that results

in an increase in the number of signals that each receiver obtains. Second, we interpret these

technologies as reducing the costs to the sender of introducing a given amount of slant. The

first interpretation is fairly direct. We suppose that each individual receiver i ∈ [0, 1] obtains

n independent signals of the form xij = θ+s+εij for j = 1, ..., n where the εij are IID normal

with mean zero and precision αx. Since the average xi := 1
n

∑n
j=1 xij is a sufficient statistic

for the unknown θ + s, this is equivalent to the receiver having a single signal xi with mean

θ+s and precision nαx, increasing in n. The second interpretation is less direct. We suppose

that the sender’s cost of introducing slant s is c(n)s2 where c(n) is decreasing in n so that as

n increases the cost of introducing a given amount of slant falls. The idea here is that these

new technologies also lead to consumers acquiring their information in a feed that blurs the

distinctions between different media outlets with an ecosystem of likes, faves and retweets

serving to facilitate the diffusion of all kinds of reporting, both reliable and unreliable, and

this serves to reduce the sender’s cost of propagating their “alternative facts”.

To summarize, we interpret the rise of new social media technologies as an increase in n

that simultaneously (i) increases the intrinsic precision nαx of the receivers’ information and

(ii) decreases the cost c(n) of a given amount of manipulation. Then from Proposition 2 we

know that for n high enough the sender will gain from their manipulation and that the size

of their gain will be relatively large when n is large. For example, suppose c(n)→ c ∈ (0, 1)

as n→∞. Then the sender’s gain from manipulation will approach

v∗ − v∗ms =
1− c
αz

and this gain will be larger the smaller is c. In this sense, the rise of new social media tech-

nologies makes information manipulation increasingly tempting to the politician. Moreover

Proposition 5 tells us that this also causes the receivers’ loss from manipulation to rise with

n and to approach their worst possible welfare loss as n→∞, namely

l∗ − l∗ms =
1− λ
αz

To the extent that we view the interests of society at large as being roughly aligned

with the receivers, these results suggest we should indeed be pessimistic about the impact

of social media — the potential welfare gains from the entry of new sources of information
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are wiped out by the politician’s “alternative facts” that can now be easily propagated.

Or, in other words, these results suggest that with the rise of social media, societal efforts

to keep information manipulation in check will be increasingly beneficial. In this sense,

editorial judgement, fact-checking, and a reputation for reliable reporting are likely to be

more important than ever.

Of course, one doesn’t need this model to arrive at the conclusion that these new social

media technologies may have adverse implications. But we find it striking that severe adverse

implications can arise even in a setting that is relatively unfavourable to strategic information

manipulation. In particular, our receivers are perfectly rational, ruthless Bayesian updating

machines, utterly free from confirmation bias or other behavioral traits that might make

them easily manipulated. In this sense, we view our results as understating the potential

adverse implications of these new social media technologies.

Gains from coordination. The strength of the receivers’ coordination motive is important

for the sender’s ability to gain from manipulation. In particular, from Proposition 3 we know

that when the coordination motive is sufficiently strong, λ > 1/2, the sender’s manipulation

can backfire if the cost of manipulation is relatively high, c > 1, and the signal precision

αx is high enough. In this situation, an ability to commit to not manipulate information

would be valuable for the sender as well as for society. To the extent that the receivers’

strong coordination motive helps align the interests of the sender with the rest of society (in

preventing strategic information manipulation), this feature of our model suggests that we

should be more optimistic about the rise of social media in societies that are intrinsically

well coordinated — or perhaps simply cooperative — and more pessimistic about the rise of

social media in societies that are less well coordinated.

In addition to helping align the interests of the sender and receivers, Lemma 8 shows that

a strong coordination motive is intrinsically valuable to the receivers. The higher is λ, the

lower the receivers’ expected loss — i.e., the receivers actually prefer it when the coordination

motive is strong. In this sense, the receivers experience gains from coordination. These no-

tional gains occur even if there is no information manipulation but are larger if the receivers

can be manipulated. In the limit as λ→ 1, so that the receivers only care about coordinat-

ing with each other and not about the accuracy of their beliefs about θ, the receivers’ are

completely insulated from the welfare-reducing effects of the sender’s manipulation because

they ignore their signals and act only according to their common prior. It can be good to be

dogmatic if people are trying to mislead you.

6.2 Interpreting the information manipulation technology

We now discuss the sender’s information manipulation technology and how it accords with

the kinds of political messaging seen in practice.
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Changing the story. Public relations consultants typically advise that their clients “stay

on message”. This gives rise to pivots of the form “... but Megyn, I don’t think that’s the

real question. Frankly, the real question is ...”. Sometimes such pivots are because the client

wants to actively push a specific message and this media opportunity is a valuable chance

to do so. But often such pivots are attempts to “change the story” in an effort to mitigate

damage from being unable to address an inconvenient fact. The current political environment

is thick with examples. To take just one, in response to the Mueller investigation’s indictment

of former Trump campaign manager Paul Manafort, Trump administration surrogates pushed

the widely-debunked hoax that the “real Russia scandal” is that, as secretary of state, “Hillary

Clinton gave the Russians 20% of US uranium” (see e.g., Illing, 2017; Sullivan, 2017).

Expressions like “muddying the waters” and “throwing up chaff” are journalistic cliches

precisely because these kinds of efforts to change the story are so routine.

Misdirection and bias. In such efforts to change the story, the form of the misdirection

is a kind of slant or spin that is favourable to the client (or unfavourable to their opponents),

at least when taken at face-value. But the effect of the misdirection is to create confusion.

Strategic communications is rife with efforts to change the story where the form of such

intervention is an alternative story with an opposing slant but where the effect of such inter-

ventions is to increase uncertainty. In our model, the truth is θ and the sender’s intervention

is some slant s such that the sender says “... no the truth is not what you think, it’s actually

θ + s ...” which individual receivers observe as xi = θ + s+ εi.

But the receivers in our model do not take such slant at face-value. In equilibrium, the

receivers in our model have unbiased beliefs in the sense that the posterior expectation µi :=

E[ θ |xi, z] is a statistically unbiased estimate of the true θ. The receivers know the sender’s

incentives and are able to use their knowledge of the sender’s problem to neutralize any effort

to shift their expectations about θ. Instead, the equilibrium effect of the sender’s intervention

is to increase the posterior variance of the receiver’s beliefs (i.e., to increase the uncertainty in

the receivers’ estimates of θ relative to the benchmark of no manipulation). The equilibrium

message is y = θ + s = (1 − δ)θ + δz so the equilibrium slant is s = δ(z − θ) = δεz. The

receivers’ equilibrium signals are then xi = θ + δεz + εi and the dependence on the common

factor δεz makes the signals xi noisier sources of information about θ than they would be

absent manipulation. The receivers’ posterior variance increases from 1/(αx + αz) absent

manipulation to 1/((1 − δ)2αx + αz) with manipulation. As the amount of manipulation

rises from δ = 0 to δ = 1, the receivers’ posterior variance increases from the benchmark

1/(αx+αz) all the way up to the prior variance 1/αz, i.e., when δ = 1 it is as if αx = 0 even if

the signals are actually intrinsically quite precise. The sender finds it optimal to pay the cost

cs2 of the slant s even though such slant has no equilibrium effect on mean beliefs because

the slant makes the signals xi endogenously noisier. The sender’s gain from this endogenous

noise is naturally larger when the intrinsic precision αx is high and the cost of manipulation
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c is low, because that is when the sender’s manipulation leads the receivers to be much less

responsive to their signals than the underlying informativeness of those signals warrants.

In short, although the form of the slant is a superficially mean-shifting message y = θ + s

the equilibrium effect of the slant is no change in mean but instead an increase in variance.

Exploiting prior beliefs. The politician’s scope to manipulate information is determined

by the gap between the true θ and the receivers’ prior expectation z. The politician’s strategy

y = (1− δ)θ + δz

chooses a message y that lies between θ and z with small amounts of manipulation causing

y to be close to θ and large amounts of manipulation causing y to be close to z. To the

extent that z is itself close to θ, there is not much potential for the politician to manipulate

and the message will inevitably also be close to θ. Ex ante, if αz is high (so that the true

θ is likely to be close to z), then the politician’s expected gains from manipulation will

be relatively low and the receivers’ expected loss from manipulation will also be relatively

low — i.e., the consequences of discounting the signals xi on account of manipulation are

modest if the prior is itself highly informative. But if αz is low (so that the true θ may be

far from z), then the politician’s expected gains from manipulation will be relatively high

and the receivers’ expected loss from manipulation will also be relatively high — i.e., the

consequences of discounting the signals xi on account of manipulation are substantive if the

prior is not informative. In this sense, the politician is exploiting the fact that the receivers’

priors will not be, in general, perfectly aligned with the truth.5

To illustrate this, consider a US presidential election where the Republican candidate is

communicating to Republican voters about the rival Democratic candidate, perhaps seeking

to prevent marginally attached Republican voters from drifting to the Democratic candi-

date. Suppose the true θ is “Hillary is a centrist Democrat” but the Republican voters’ prior

z is “Hillary is a radical communist”. Then the message y is that “Hillary is a left-wing

Democrat” and in equilibrium the Republican voters have beliefs µi := E[ θ |xi, z] that are

correct on average, i.e., on average the Republican voters do believe that “Hillary is a centrist

Democrat”, but they are more uncertain about their beliefs than they would be absent the

messaging. A striking example of this is in the limit with very precise signals but very low

costs of manipulation, in which case the Republican voters end up making decisions based

entirely on their prior z. The messaging y creates a clear gap between the actions of the

Republican voters (which reflect their prior) and the beliefs of the Republican voters (which

are correct on average). In short, the Republican voters act according to their prior z that

5To be clear, the prior mean z constitutes an unbiased signal of the true θ in that E[θ | z] = θ, but for any
given realization z 6= θ almost surely. The distance z − θ then determines the sender’s scope to manipulate
and lower αz implies that ex ante that distance is more likely to be large.
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“Hillary is a radical communist” even though they tend to believe that “Hillary is a cen-

trist Democrat”. This misalignment between actions and beliefs is caused by the Republican

candidate’s messaging, which takes advantage of the misalignment between the Republican

voters’ prior and the truth. Of course this leaves out many interesting complications, espe-

cially the role of competition between rival communications and the role of heterogeneous

priors. The point is simply that, in this model, the receivers’ priors matter crucially for the

sender’s incentives to manipulate and for the welfare consequences of that manipulation.

7 Conclusion

We develop a sender/receiver game with many imperfectly informed and imperfectly coor-

dinated receivers. The receivers try to take actions that align both with their beliefs about

the true state of the world and also with the actions of other receivers. The sender engages

in costly efforts to prevent the receivers from taking actions that align with the true state of

the world. In this sense, the sender is at least partially malevolent. The receivers are rational

and free from “confirmation bias” or any other attributes that would make them easy to

deceive. As a consequence, in equilibrium the receivers beliefs are unbiased.

But despite this lack of bias, the sender can gain substantially from the endogenous

noise that is a byproduct of their manipulation. In particular, we find that the sender gains

most when the receivers have intrinsically very precise information but the sender’s costs of

manipulation are low. In this situation, the receivers possess information that is a very reliable

guide to the truth but their actions do not reflect it. We also find that the manipulation can

backfire on the sender. This happens when the receivers’ information is intrinsically precise,

the costs of manipulation are high, and the receivers are sufficiently well coordinated. The

receivers are always made worse off by the manipulation, even when it backfires on the sender

(this is not a zero-sum game). We find that a small fall in the sender’s costs of manipulation

can lead to a discrete jump in the amount of manipulation and a correspondingly dramatic

welfare loss for the receivers.

In our main application, we interpret the sender as a politician who benefits from the

tumultuous noise created as they propagate their “alternative facts”. And we argue that the

rise of new social media technologies have indeed had the effect of increasing the intrinsic,

potential, precision of available information while at the same time reducing the costs of

propagating misinformation — i.e., the combination of parameter changes that our model

suggests will be most beneficial to the sender and most harmful to everyone else. Of course,

one doesn’t need this model to arrive at the conclusion that these new social media technolo-

gies may have adverse implications. But we find it striking that severe adverse implications

can arise even in a setting where the receivers are rational and not easy to deceive. In this

sense, we view our results as something of an understatement.

In keeping the model simple, we have abstracted from a number of important issues.
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First, in political contexts competition between multiple senders seems like an important

consideration that, at least in principle, could mitigate some of the effects outlined here.

But perhaps not — after all, competing distorted messages could also just increase the

amount of noise facing the information receivers. Second, we assumed that the receivers

have identical preferences and prior beliefs. This makes for clear welfare calculations, but

partisan differences in preferences and/or prior beliefs seem important especially if one wants

a more unified model of political communication and political polarization. It would also be

valuable to assess in what ways confirmation biases or other behavioral attributes interact

with the endogenous noise mechanism that we emphasize.

Finally, we should note that our stylized model has broader applications. For example,

consider a game with one market-maker and a continuum of traders. Suppose the traders

care about both the true value of an asset and the price of that asset as determined by

average trading activities in the market. It may then be in the interest of the market-maker

to persuade the traders not to coordinate on the true value of the asset, so as to maximize

trading volume. Another example is a game between a firm’s owner and many creditors.

Suppose the firm is teetering on the edge of bankruptcy. The individual creditors would like

to pick the best bankruptcy plan taking into account both their assessment of the current

profitability of the firm and the need to coordinate with the other creditors. The owner of the

firm who wants to buy time or prevent the bankruptcy will then have incentive to persuade

the creditors to not have similar assessments of the current profitability of the firm in order

to make it harder for them to agree on a plan.
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Appendix

A Proofs

A.1 Best responses

Proof of Lemma 1.

Recall that the sender’s best response (20) requires c ≥ k2, otherwise the sender is at a corner with δ(k) = 0.
Hence we focus on k ∈ [−√c,+√c] and we distinguish two cases, depending on the magnitude of c.

(i) If c ≥ 1 such that 1 ≤ √c ≤ c then from the sender’s best response (20) we have δ(k) < 0 if k < 0 and
δ(k) < 0 if k ∈ (1,

√
c ] but δ(k) ∈ [0, 1] if k ∈ [0, 1]. From the receivers’ best response (27) we have

k(δ) < 0 if δ > 1 and k(δ) < 1 if δ < 0. Hence if c ≥ 1 the only possible crossing points of k(δ) and
δ(k) are in the unit square with k∗ ∈ [0, 1] and δ∗ ∈ [0, 1].

(ii) If c ∈ (0, 1) such that 0 < c <
√
c < 1 then from the sender’s best response (20) we have δ(k) < 0 if

k < 0 and δ(k) > 1 if k ∈ (c,
√
c ] but δ(k) ∈ [0, 1] if k ∈ [0, c]. Again from the receivers’ best response

(27) we have k(δ) < 0 if δ > 1 and k(δ) < 1 if δ < 0. Hence if c ∈ (0, 1) the only possible crossing
points of k(δ) and δ(k) are in a subset of the unit square with k∗ ∈ [0, c] and δ∗ ∈ [0, 1].

Hence in any equilibrium, k∗ ∈ [0, 1] and δ∗ ∈ [0, 1]. �

Proof of Lemma 2.

Differentiating the receivers’ best response k(δ) in (28) with respect to δ gives

k′(δ) = α
(1− δ)2α− 1

((1− δ)2α+ 1)2
, δ ∈ [0, 1], α > 0 (A1)

Hence
k′(δ) > 0 ⇔ δ < 1− 1/

√
α (A2)

Now let δ̂(α) := max[ 0, 1− 1/
√
α ]. If α ≤ 1, then the critical point is on the boundary δ̂(α) = 0 and there

is no δ ∈ [0, 1] such that δ < δ̂(α) hence if α ≤ 1 we conclude that k(δ) is decreasing for all δ ∈ [0, 1]. If

α > 1 then the critical point is in the interior δ̂(α) ∈ (0, 1) and we conclude that k(δ) is increasing on the

interval [0, δ̂(α)] and decreasing on the interval [δ̂(α), 1]. Plugging in δ = 0 and δ = 1 gives the boundary
values k(0) = α/(α+ 1) and k(1) = 0 respectively. �

Proof of Lemma 3.

Differentiating the sender’s best response δ(k) in (31) with respect to k gives

δ′(k) =

(
1

c− k2
)2 (

k2 − 2ck + c
)
, k ∈ K(c), c > 0 (A3)

Hence
δ′(k) > 0 ⇔ k2 − 2ck + c > 0 (A4)

Now consider the quadratic equation
q(k) = k2 − 2ck + c = 0 (A5)

Observe that if c < 1 then q(k) = 0 has no real roots and q(k) > 0 for all k ∈ [0, 1], if c = 1 then q(k) = 0
has a unique root k = 1 and q(k) ≥ 0 for all k ∈ [0, 1] with equality only at k = 1, and if c > 1 then q(k) = 0
has two distinct real roots

k1, k2 := c±
√
c(c− 1)
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with k1 < 1 < k2 such that if c > 1 then q(k) > 0 for all k ∈ [0, k1) and q(k) < 0 for all k ∈ (k1, 1].

Now let k̂(c) denote the largest admissible k such that q(k) > 0, that is

k̂(c) := max{k ∈ K(c) : q(k) > 0} (A6)

If c ≤ 1, then the critical point is on the boundary k̂(c) = c and there is no k ∈ K(c) such that k > k̂(c)
hence if c ≤ 1 we conclude that δ(k) is increasing for all k ∈ [0, c]. If c > 1, then the critical point is in the

interior k̂(c) = c−
√
c(c− 1) and we conclude that δ(k) is increasing on the interval [0, k̂(c)] and decreasing

on the interval [k̂(c), 1]. Plugging in k = 0 gives δ(0) = 0 for any c. If c ≤ 1 then plugging in k = c gives
δ(c) = 1. If c > 1 (so that k = 1 is admissible) then plugging in k = 1 gives δ(1) = 0. �

A.2 Equilibrium results

Caveat on equilibrium results. As explained in Appendix B below, in the knife-edge case that c = 1
exactly there is no (linear) equilibrium if the relative precision α > 4. This knife-edge case is essentially
negligible in the sense that for any c arbitrarily close to 1 there is a unique (linear) equilibrium for any
α > 0, but formally this means we should handle the case c = 1 separately. The proofs of the equilibrium
results and welfare results below should be understood to pertain to any generic c 6= 1 but to streamline the
exposition we have chosen not to keep listing the c 6= 1 exception. For example, we report various derivatives
of equilibrium outcomes with respect to c without always noting that these derivatives may not exist at
c = 1. These derivatives should of course be read in terms of left-hand or right-hand derivatives as c → 1−

or c→ 1+ as the case may be. We treat the knife-edge case c = 1 separately in Appendix B below.

Proof of Proposition 1.

An equilibrium is a pair k∗, δ∗ simultaneously satisfying the receivers’ k(δ) and the sender’s δ(k). Plugging
the expression for δ(k) from (31) into the sender’s k(δ) from (28) and simplifying, we can write the equilibrium
problem as finding k∗ ∈ K(c) that satisfies

L(k) = R(k) (A7)

where

L(k) :=
1

α
k, R(k) := c

(c− k)(1− k)

(c− k2)2
(A8)

and recall that k ∈ K(c) implies c− k2 ≥ 0. Observe that L(0) = 0 and L(min(c, 1)) = min(c, 1)/α > 0 and
that L′(k) = 1/α > 0. Observe also that R(0) = c2/c2 = 1 and that R(min(c, 1)) = 0. Moreover

R′(k) = c

(
1

c− k2
)3

P (k), P (k) :=
(
2k3 − 3k2 − 3ck2 + 6ck − c2 − c

)
(A9)

Hence the sign of R′(k) is the same as the sign of the polynomial P (k). Now let P (c) denote the largest
possible value of this polynomial

P (c) := max
k∈K(c)

P (k) ≥ P (k) (A10)

Computing the maximum then gives

P (c) = (2c− c2 − 1) max(c, 1) ≤ 0 (A11)

with equality only in the knife-edge case c = 1. Hence P (k) ≤ 0 for all k ∈ K(c) and so we conclude
R′(k) ≤ 0 for all k ∈ K(c). Hence the function H(k) := L(k)−R(k) is strictly increasing from H(0) = −1 to
H(min(c, 1)) = min(c, 1)/α > 0 and hence there is a unique response coefficient k∗ such that H(k∗) = 0 or
L(k∗) = R(k∗). We can then recover the unique manipulation coefficient δ∗ = δ(k∗) from (31). Hence there
is a unique pair k∗, δ∗ simultaneously satisfying the receivers’ k(δ) and the sender’s δ(k). �
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Proof of Lemma 4.

In equilibrium we have k∗ = k(δ∗;α) and δ∗ = δ(k∗; c) which determine the functions k∗(α, c) and δ∗(α, c).
For part (i), applying the implicit function theorem gives

∂k∗

∂α
=

(
1

1− k′(δ∗)δ′(k∗)

)
∂k(δ∗;α)

∂α
(A12)

where, in slight abuse of notation, k′(δ∗) and δ′(k∗) denote the derivatives of the best response functions
evaluated at equilibrium. Now observe from (28) that

∂k(δ;α)

∂α
=

1− δ
((1− δ)2α+ 1)2

∈ [0, 1], δ ∈ [0, 1], α > 0 (A13)

We also have formulas for k′(δ) in (A1) and for δ′(k) in (A3) above. We will now show that at equilibrium
the product k′(δ∗)δ′(k∗) is nonpositive. To do this, first use the definition of the receivers’ best response k(δ)
to write, after some rearrangements,

k′(δ) = 2k(δ)2 − k(δ)

1− δ (A14)

Evaluating this at the equilibrium k∗, δ∗ and rearranging gives

k′(δ∗) =

(
k∗

c− k∗
)(

2ck∗ − k∗ 2 − c
)

(A15)

Notice that k′(δ∗) has the sign of 2ck∗ − k∗2 − c while δ′(k∗) has the sign of k∗2 − 2ck∗ + c. Indeed,

k′(δ∗)δ′(k∗) = −
(

k∗

c− k∗
) (

k∗2 − 2ck∗ + c

c− k∗2
)2

≤ 0 (A16)

Hence from (A12), (A13) and (A16) we can conclude that k∗(α, c) is strictly increasing in α. For part (ii) we
use the sender’s best response to calculate

∂δ∗

∂α
= δ′(k∗)

∂k∗

∂α
(A17)

From Lemma 3 we know that δ′(k) > 0 if and only if k < k̂(c) where k̂(c) is the critical point defined in (32).
Hence we can conclude

∂δ∗

∂α
> 0 ⇔ k∗(α, c) < k̂(c) (A18)

Now for any fixed c > 0, the critical point α̂(c) is constructed using the result from part (i) that k∗(α, c) is

strictly increasing in α to find the smallest value of α such that k∗(α, c) ≥ k̂(c). If there is no such value,

then we set α̂(c) = +∞. If there is a finite value of α that achieves equality, k∗(α, c) = k̂(c), then we take

α̂(c) to be that value. In particular, if c < 1 then from (32) we have k̂(c) = c < 1 and so for all finite α we

have k∗(α, c) < k̂(c) so that for c < 1 we take α̂(c) = +∞. Alternatively, if c > 1 then from (32) we have

k̂(c) ∈ ( 1
2 , 1) and so there is a finite α̂(c) such that k∗(α̂(c), c) = k̂(c). �

Proof of Lemma 5.

In equilibrium we have k∗ = k(δ∗;α) and δ∗ = δ(k∗; c) which determine the functions k∗(α, c) and δ∗(α, c).
For part (i), applying the implicit function theorem gives

∂δ∗

∂c
=

(
1

1− k′(δ∗)δ′(k∗)

)
∂δ(k∗; c)

∂c
(A19)

We already know from (A16) that k′(δ∗)δ′(k∗) ≤ 0. And from (31) observe that

∂δ(k; c)

∂c
= − k − k2

(c− k2)2
< 0 (A20)
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Hence we can conclude that δ∗(α, c) is strictly decreasing in c. For part (ii) we use the receivers’ best response
to calculate

∂k∗

∂c
= k′(δ∗)

∂δ∗

∂c
(A21)

From Lemma 2 we know that k′(δ) < 0 if and only if δ > δ̂(α) where δ̂(α) is the critical point defined in (29).
Hence we can conclude

∂k∗

∂c
> 0 ⇔ δ∗(α, c) > δ̂(α) (A22)

Now for any fixed α > 0, the critical point ĉ(α) is constructed using the result from part (i) that δ∗(α, c) is

strictly decreasing in c to find the smallest value of c such that δ∗(α, c) ≤ δ̂(α). If there is no such value,

then we set ĉ(α) = +∞. If there is a finite value of c that achieves equality, δ∗(α, c) = δ̂(α), then we take

ĉ(α) to be that value. In particular, if α < 1 then from (29) we have δ̂(α) = 0 and so for all finite c we

have δ∗(α, c) > δ̂(α) so that for α < 1 we take ĉ(α) = +∞. Alternatively, if α > 1 then from (29) we have

δ̂(α) ∈ (0, 1) and so there is a finite ĉ(α) such that δ∗(α, ĉ(α)) = δ̂(α). �

Proof of Lemma 6.

Recall that k∗ms(α) := α/(α + 1). We focus on the case that α > 1. If α ≤ 1 then any c < +∞ implies
δ∗(α, c) > 0 and hence k∗(α, c) < k∗ms(α). With α > 1 we find combinations of (α, c) that give k∗(α, c) =
k∗ms(α). From the receivers’ best response in Lemma 2 we can determine the amount of manipulation required
to equate k(δ;α) and k∗ms(α), this works out to be

δ∗(α, c) =
α− 1

α
, α > 1 (A23)

Then since δ∗(α, c) = δ(k∗(α, c); c) and at this boundary k∗(α, c) = k∗ms(α) this level of manipulation satisfies

δ(k∗ms(α); c) =
α− 1

α
(A24)

Plugging k∗ms(α) into the formula (31) for the sender’s best response δ(k; c) gives the condition

α

α+ 1
−
(

α

α+ 1

)2

c−
(

α

α+ 1

)2 =
α− 1

α
(A25)

Solving this for c in terms of α we get

c =
α

α− 1

(
α

α+ 1

)2

=: c∗ms(α) (A26)

(with c∗ms(α) = +∞ for α ≤ 1). Now we show that k∗(α, c) < k∗ms(α) if and only if c < c∗ms(α). Let

δ∗ms(α) := δ∗(α, c∗ms(α)) (A27)

(with δ∗ms(α) = 0 for α ≤ 1). Observe that

δ∗ms(α) =
α− 1

α
> δ̂(α) (A28)

where δ̂(α) is the critical point defined in Lemma 2. Then the receivers’ best response is decreasing in δ
for any δ ≥ δ∗ms(α). Further observe that k(δ∗ms(α);α) = k∗ms(α) so that k∗(α, c) < k∗ms(α) if and only if
δ∗(α, c) > δ∗ms(α). From Lemma 5 we know that δ∗(α, c) is strictly decreasing in c hence any c < c∗ms(α) is
equivalent to δ∗(α, c) > δ∗ms(α). �
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A.3 Welfare results

Proof of Lemma 7.

For part (i), recall that in the absence of manipulation, the sender’s equilibrium payoff is

v∗ms =
(1− λ)2αx + αz

((1− λ)αx + αz)2
(A29)

Differentiating with respect to αx and collecting terms we can write

dv∗ms
dαx

= − (1− λ)3αx + (1− λ)(1 + λ)αz
((1− λ)2αx + αz)((1− λ)αx + αz)

v∗ms < 0 (A30)

Hence v∗ms is strictly decreasing in αx.

With manipulation, the sender’s equilibrium payoff is v∗ = v(k∗;αx) where v(k;αx) is the sender’s value
function, namely

v(k;αx) =
1

αz
(1− k)2

(
c

c− k2
)

+
1

αx
k2 (A31)

The total derivative of v∗ with respect to αx can be written

dv∗

dαx
= v′(k∗)

∂k∗

∂αx
+
∂v(k∗;αx)

∂αx
(A32)

where, in slight abuse of notation, v′(k∗) denotes the derivative of the sender’s value function evaluated at
the equilibrium k∗. From Lemma 4 we have

∂k∗

∂αx
> 0 (A33)

(since α = (1 − λ)αx/αz, so the derivative of k∗ with respect to αx is proportional to the derivative with
respect to α). The other derivatives we need are

∂v(k∗;αx)

∂αx
= −

(
k∗

αx

)2

< 0 (A34)

and

v′(k∗) = 2

(
k∗

αx
− R(k∗)

αz

)
= −2

λ

1− λ

(
k∗

αx

)
< 0 (A35)

where R(k) is given in (A8) above and we use the equilibrium condition from (A8) that 1
1−λ

αz

αx
k∗ = R(k∗).

Hence from (A33), (A34) and (A34) we can conclude that v∗ is also strictly decreasing in αx.
For part (ii) we can directly compute the limits of v∗ms from (A29), namely

lim
αx→0+

v∗ms =
αz
α2
z

=
1

αz
(A36)

And dividing numerator and denominator of (A29) by α2
x > 0 we have

lim
αx→∞

v∗ms = lim
αx→+∞

(1− λ)2 1
αx

+ αz

α2
x

(1− λ)2 + 2(1− λ)αz

αx
+

α2
z

α2
x

= 0 (A37)

For the limits of v∗ = v(k∗;αx) we repeatedly use that v(k;αx) is continuous in k and that k∗ is continuous
in αx. In the limit as αx → 0+ we have k∗ → 0+ so that

lim
αx→0+

v∗ =
1

αz
(1− 0)2

(
c

c− 02

)
+ lim
αx→0+

k∗2

αx
=

1

αz
+ 0 =

1

αz
(A38)
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where we have used L’Hôpital’s rule and (A12) and (A13) to calculate that

lim
αx→0+

k∗2

αx
= lim
αx→0+

2k∗
dk∗

dαx
= lim
αx→0+

2k∗
(

1

1− k′(δ∗)δ′(k∗)

)
∂k(δ∗;α)

∂α

∂α

∂αx

= lim
αx→0+

2k∗
(

1

1− k′(δ∗)δ′(k∗)

)
(1− δ∗)

((1− δ∗)2α+ 1)2
(1− λ)

1

αz
= 0

where the limit follows because δ∗ ∈ [0, 1] for all αx and k∗ → 0 and hence from (A16) k′(δ∗)δ′(k∗) → 0 as
αx → 0+. At the other extreme, in the limit as αx →∞ we have k∗ → min(c, 1) so that

lim
αx→∞

v∗ =


1

αz
(1− c)2 c

c− c2 =
1− c
αz

if c < 1

1

αz
(1− 1)2

c

c− 1
= 0 if c > 1

(A39)

�

Proof of Proposition 2.

Recall that the sender’s value function with manipulation is

v(k) := max
δ∈[0,1]

V (δ, k) =
1

αz
(1− k)2

(
c

c− k2
)

+
1

αx
k2 (A40)

whereas the sender’s value function without manipulation is

vms(k) := V (0, k) =
1

αz
(1− k)2 +

1

αx
k2 ≤ v(k) (A41)

We decompose the sender’s gain from manipulation as

v∗ − v∗ms = (v(k∗)− vms(k∗)) + (vms(k
∗)− vms(kms)) (A42)

For part (i), first observe that v(k∗) ≥ vms(k
∗) for any k∗ hence for v∗ > v∗ms it suffices that vms(k

∗) >
vms(kms). Then observe that v′ms(k) < 0 for all k in the interval (0, αx

αx+αz
). Hence if k∗ ∈ (0, k∗ms) then

vms(k
∗) > vms(kms) and we conclude that v∗ > v∗ms. Then from Lemma 6 we know that a necessary and

sufficient condition for k∗ < k∗ms is that the cost of manipulation be c < c∗ms(α) where c∗ms(α) is the critical
cost given in (43). This parameter configuration is sufficient for v∗ > v∗ms but is not necessary. We now show
that if λ < 1

2 then v∗ > v∗ms even if k∗ > k∗ms. To see this, observe from (A8) above that in equilibrium

1

1− λ
αz
αx
k∗ = c

(c− k∗)(k∗ − 1)

(c− k∗2)2
(A43)

With can use this to write the sender’s equilibrium payoff as

v∗ =
1

(1− λ)αx

{
k∗ − λk∗2 +

k∗2(1− k∗)2
c− k∗

}
(A44)

Likewise the benchmark coefficient k∗ms satisfies the analogous condition

1

1− λ
αz
αx
k∗ms = 1− k∗ms (A45)

and we can write the sender’s equilibrium payoff absent manipulation as

v∗ms =
1

(1− λ)αx

{
k∗ms − λk∗2ms

}
(A46)

Hence the sender gains from manipulation, v∗ > v∗ms if and only if

f(k∗) + g(k∗) > f(k∗ms) (A47)
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where

f(k) := k − λk2, g(k) :=
k2(1− k)2

c− k ≥ 0 (A48)

Since g(k) ≥ 0, a sufficient condition for v∗ > v∗ms is that f(k∗) > f(k∗ms). Now observe that f(k) is strictly
concave and is strictly increasing in k on [0, 1

2λ ) and hence if λ < 1
2 we have that f(k) is strictly increas-

ing for all k ∈ [0, 1] and hence even if k∗ > k∗ms we can conclude that λ < 1
2 is sufficient to guarantee v∗ > v∗ms.

For part (ii), simply observe from Lemma 7 that as αx → ∞ we have v∗ms → 0+ while v∗ → (1− c)/αz
if c < 1 but v∗ → 0+ if c > 1. �

Proof of Proposition 3.

From the proof of Proposition 2, the sender’s manipulation backfires, v∗ < v∗ms, if

g(k∗) < f(k∗ms)− f(k∗) (A49)

where again

f(k) := k − λk2, g(k) :=
k2(1− k)2

c− k ≥ 0 (A50)

and we know that necessary conditions for this are that c > c∗ms(α) so that k∗ > k∗ms and that λ > 1
2 .

Supposing k∗ > k∗ms, we can rewrite the inequality in (A49) as

k∗2(1− k∗)2
k∗ − k∗ms

< (λ(k∗ms + k∗)− 1))(c− k∗) (A51)

and moreover from the fixed point conditions (A43) and (A45) that characterize k∗ and k∗ms we can write

1− k∗ms
1− k∗ =

k∗ms
k∗

(
c

(c− k∗)
(c− k∗2)2

)
(A52)

so that (A51) is equivalent to the inequality

k∗2(1− k∗)
k∗ms

k∗

(
c (c−k∗)
(c−k∗2)2

)
− 1

< (λ(k∗ms + k∗)− 1))(c− k∗) (A53)

We will now show that if in addition to c > c∗ms(α) and λ > 1
2 we also have c > 1, then, for αx large

enough, the LHS of (A53) will be strictly less than the RHS of (A53). In particular, if c > 1 and λ > 1
2 then

as αx →∞ the RHS of (A53) converges to a strictly positive constant

lim
αx→∞

(λ(k∗ms + k∗)− 1))(c− k∗) = (λ2− 1)(c− 1) > 0 (A54)

(since k∗ → 1 if c > 1). But the LHS of (A53) converges to zero

lim
αx→∞

k∗2(1− k∗)
k∗ms

k∗ c
c−k∗

(c−k∗2)2 − 1
=

0+

c
(c−1) − 1

= 0+ (A55)

so that if c > 1 and λ > 1
2 then there exists α∗x such that for αx > α∗x the LHS of (A53) is strictly less than

the RHS of (A53) so that the sender’s manipulation backfires, v∗ < v∗ms.

Finally, observe that this argument requires c > 1 in addition to c > c∗ms(α) and λ > 1
2 . This means

we need αx large enough to ensure that c > 1 also implies 1 > c∗ms(α) where α and αx are linked by
α = (1− λ)αx/αz. In particular, from (43) we have 1 > c∗ms(α) if α > 1 and if

α2 − α− 1 > 0 (A56)

The roots of the quadratic on the LHS are

α1, α2 =
1

2
± 1

2

√
5 (A57)
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with α1 < 1 < α2. So we need α > α2 = (1 +
√

5)/2 to ensure that 1 > c∗ms(α) so that c > 1 is sufficient for
k∗ > k∗ms. Since α = (1− λ)αx/αz, the critical point α∗x must be at least

α∗x >

(
1 +
√

5

2

)(
αz

1− λ

)
(A58)

�

Proof of Lemma 8.

For part (i), observe that in the absence of manipulation, the receivers’ equilibrium loss is

l∗ms =
(1− λ)

(1− λ)αx + αz
(A59)

Hence in the absence of manipulation, the receivers’ loss l∗ms(αx) is strictly decreasing in αx

dl∗ms
dαx

= − (1− λ)2

((1− λ)αx + αz)2
< 0 (A60)

For part (ii), observe that with manipulation, the receivers’ equilibrium loss is l∗ = l(δ∗(αx);αx) where
l(δ;αx) is the receivers’ expected loss function, namely

l(δ;αx) =
(1− λ)

(1− δ)2(1− λ)αx + αz
(A61)

The total derivative of l∗ with respect to αx can be written

dl∗

dαx
= l′(δ∗)

dδ∗

dαx
+
∂l(δ∗;αx)

∂αx
(A62)

We will now show that if c > 1 the receivers’ loss with manipulation l∗ is strictly decreasing in αx but for
each c < 1 there exists a critical point α∗∗x such that l∗ is strictly decreasing for all αx < α∗∗x and strictly
increasing for all αx > α∗∗x . Calculating the derivatives in (A62) and rearranging, we obtain

dl∗

dαx
> 0 ⇔ (1− δ∗)− 2αx

dδ∗

dαx
< 0 (A63)

Equivalently, if and only if
dδ∗

dαx
>

1

2αx
(1− δ∗) > 0 (A64)

Now recall that in equilibrium the sender’s manipulation depends on αx only via the receivers’ response
coefficient, δ∗(αx) = δ(k∗(αx)), so that

dδ∗

dαx
= δ′(k∗)

dk∗

dαx
(A65)

So we can write condition (A64) as

δ′(k∗)
dk∗

dαx
>

1

2αx
(1− δ∗) > 0 (A66)

Applying the implicit function theorem to the equilibrium condition (A8) above we have

dk∗

dαx
=

αz

(1−λ)αx

k∗

αx

αz

(1−λ)αx
−R′(k∗) > 0 (A67)

where R(k) is defined in (A8). Plugging this into (A66) and simplifying we get the equivalent condition

αz
(1− λ)αx

(
δ′(k∗)k∗ − 1

2
(1− δ∗)

)
> −1

2
(1− δ∗)R′(k∗) (A68)
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Now observe from (A3) above that

δ′(k)k − 1

2
(1− δ) =

1

2

(
1

c− k2
)2 (

k3 − 3ck2 + 3ck − c2
)

(A69)

and that using the formula for R′(k) given in (A9) above we can calculate that

1

2
(1− δ)R′(k) =

1

2

(
1

c− k2
)2

R(k)
1

1− kP (k) (A70)

where P (k) is also defined in (A9) above. Plugging these calculations back into (A68) gives

αz
(1− λ)αx

(
1

2

(
1

c− k∗2
)2 (

k∗3 − 3ck∗2 + 3ck∗ − c2
))

> −1

2

(
1

c− k∗2
)2

R(k∗)
1

1− k∗P (k∗) (A71)

Cancelling common terms gives the condition

αz
(1− λ)αx

(
k∗3 − 3ck∗2 + 3ck∗ − c2

)
> −R(k∗)

1

1− k∗P (k∗) (A72)

Using the equilibrium condition L(k∗) = R(k∗) from (A8) and α = (1− λ)αx/αz gives

αz
(1− λ)αx

(
k∗3 − 3ck∗2 + 3ck∗ − c2

)
> − αz

(1− λ)αx

k∗

1− k∗P (k∗) (A73)

Using the definition of P (k) and cancelling more common terms gives the condition

k∗4 − 2k∗3 + 2ck∗ − c2 > 0 (A74)

To summarize, we have shown that

dl∗

dαx
> 0 ⇔ F (k∗) := k∗4 − 2k∗3 + 2ck∗ − c2 > 0 (A75)

We will now show that if c > 1 then it cannot be the case that F (k∗) > 0 but that for c < 1 it will be the
case that F (k∗) > 0 for sufficiently large αx.

To see this, write F (k) = J(k; c) − G(k) where J(k; c) := 2ck − c2 and G(k) := 2k3 − k4. Observe
that G(0) = 0, G(1) = 1, G(k) < k for all k; G′(k) = 2k2(3 − 2k) ≥ 0 with G′(0) = 0 and G′(1) = 2; and
G′′(k) = 12k(1−k) ≥ 0 so that G′(k) ≤ G′(1) = 2 for all k. Further observe that J(0; c) = −c2 < 0, J(1; c) =
2c− c2 ≤ 1 (with equality if c = 1) and J ′(k; c) = 2c > 0 for all k so that J(k; c) ≤ J(1; c) = 2c− c2 ≤ 1 for
all k, c. These imply F (0) = J(0; c) − G(0) = −c2 < 0 and F (1) = J(1; c) − G(1) = 2c − c2 − 1 ≤ 0 (with
equality if c = 1); F ′(k) = J ′(k; c)−G′(k) = 2c−G′(k) and F ′′(k) = −G′′(k) ≤ 0. Since G′(k) ≤ 2 we have

F ′(k) = J ′(k; c)−G′(k) = 2c−G′(k) ≥ 2c− 2 = 2(c− 1) (A76)

Now consider c > 1. Then F ′(k) ≥ 2(c − 1) > 0 so F (k) is strictly increasing from F (0) = −c2 < 0 to
F (1) = 2c − c2 − 1 < 0 so that F (k) < 0 for all k and hence it is not possible for F (k∗) > 0 and hence for
c > 1 the receivers’ loss is unambiguously decreasing in αx.

Now consider c < 1. Then since G′(k) is monotone increasing from G′(0) = 0 to G′(1) = 2 there is a
unique critical point k̃ such that

F ′(k̃) = 0 ⇔ 2c = G′(k̃) (A77)

Since F ′′(k) ≤ 0, this critical point maximizes F (k) hence

F (k) ≤ max
k∈[0,1]

F (k) = F (k̃) (A78)

and observe that if we take k = c < 1 (which is feasible since here c < 1) then we have

F (c) = J(c; c)−G(c) = 2c2 − c2 −G(c) = c2 − 2c3 + c4 = c2(1− 2c+ c2) > 0 (A79)
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so that indeed
F (k̃) ≥ F (c) > 0 (A80)

Hence for c < 1 there exist k such that F (k) > 0. More precisely, the function F (k) increases from F (0) =
−c2 < 0 to a lower cutoff k ∈ (0, k̃) defined by F (k) = 0. The function F (k) keeps increasing until it reaches
the critical point k̃ at which F ′(k̃) = 0 and F (k̃) > 0. From there F (k) decreases, crossing zero again at a
higher cutoff k ∈ (k̃, 1) defined by F (k) = 0 and keeps decreasing until F (1) = 2c− c2 − 1 < 0 (since c < 1).

So for c < 1 there is an interval (k, k) with 0 < k < k < 1 such that F (k) > 0 for k ∈ (k, k) and F (k) ≤ 0
otherwise. For c < 1 these critical points are defined by the roots of F (k; c) = 0. Observe that since F (c) > 0
yet k is the first k for which F (k) = 0 it must be the case that k < c. Likewise since F (k) = 0 it must also
be the case that k > c. In short, the cutoffs are on either side of c so that 0 < k < c < k < 1.

Since k∗(αx, c) is strictly increasing in αx from 0 to min(c, 1), for any fixed c < 1 there is then a critical
point α∗∗x solving

k∗(α∗∗x , c) = k (A81)

such that for any αx > α∗∗x we have k∗(αx, c) ∈ (k(c), c) so that F (k∗) > 0 and hence for αx > α∗∗x the
receivers’ loss is strictly increasing in αx.

For part (iii) we can directly compute the limits of l∗ms from (A59), these are:

lim
αx→0+

l∗ms =
1− λ
αz

(A82)

and
lim

αx→∞
l∗ms = 0 (A83)

For the limits of l∗ = l(δ∗;αx) we repeatedly use that l(δ;αx) is continuous in δ and that δ∗ is continuous in
αx. In the limit as αx → 0+ we have δ∗ → 0 so that

lim
αx→0+

l∗ =
(1− λ)

(1− 0)2(1− λ)0 + αz
=

1− λ
αz

(A84)

At the other extreme, as αx →∞ we have δ∗ → 1 if c < 1 but δ∗ → 0 if c > 1. If c < 1 then in the limit as
αx →∞ we have

lim
αx→∞

l∗ = lim
αx→∞

(1− λ)

(1− δ∗)2(1− λ)αx + αz
=

1− λ
αz

(A85)

where we have used L’Hôpital’s rule and (A65) and (A67) to calculate that

lim
αx→∞

(1− δ∗)2αx = lim
αx→∞

2(1− δ∗) dδ
∗

dαx
α2
x = lim

αx→∞
2(1− δ∗)δ′(k∗) dk

∗

dαx
α2
x

= lim
αx→∞

2(1− δ∗)δ′(k∗)
(

αz

(1−λ)k
∗

αz

(1−λ)αx
−R′(k∗)

1

α2
x

)
α2
x

= 2(1− 1)
1

c− c2

(
αz

(1−λ)c

0 + 1
c−c2

)
= 0

(since if c < 1 we have δ∗ → 1 and k∗ → c and from (A3) and (A9) we have δ′(c) = −R′(c) = 1/(c − c2)).
Alternatively, if c > 1 then δ∗ → 0 as αx →∞ so that from (A61) we simply have

lim
αx→∞

l∗ = lim
αx→∞

(1− λ)

(1− δ∗)2(1− λ)αx + αz
= 0 (A86)

Putting (A85) and (A86) together we finally have

lim
αx→∞

l∗ =


1− λ
αz

if c < 1

0 if c > 1

(A87)

�
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Proof of Proposition 4.

Recall that the receivers’ expected loss function is

l(δ) =
(1− λ)

(1− δ)2(1− λ)αx + αz
(A88)

And that l∗ = l(δ∗) and that l∗ms = l(0). Since

l′(δ) =
2(1− δ)(1− λ)2αx

((1− δ)2(1− λ)αx + αz)2
> 0 (A89)

we have that l∗ ≥ l∗ms, strictly if δ∗ > 0. �

Proof of Proposition 5.

For part (i), since l∗ms is strictly decreasing in αx the excess loss l∗ − l∗ms is surely increasing in αx if l∗ is.
But by Lemma 8 we know that if c < 1 then l∗ is strictly increasing in αx for all αx > α∗∗x where α∗∗x is the
critical point implicitly defined in (A81) above. Hence αx > α∗∗x is also sufficient for the excess loss l∗− l∗ms to
be strictly increasing in αx. For part (ii), simply observe from Lemma 8 that as αx →∞ we have l∗ms → 0+

while l∗ → (1− λ)/αz if c < 1 but l∗ → 0+ if c > 1. �

B Discontinuity at c = 1 and jumps in manipulation

Preliminaries. There is no issue with c = 1 if the relative precision α ≤ 4. The issues with c = 1 arise
only if α > 4. To see this, first recall from Lemma 2 that if α > 1 the receivers’ best response k(δ;α) is

increasing in δ on the interval [0, δ̂(α)] and obtains its maximum at δ = δ̂(α) = 1 − 1/
√
α ∈ (0, 1). At the

maximum, the receivers’ best response takes on the value k(δ̂(α);α) =
√
α/2. Hence for α > 4 the maximum

value exceeds 1. Moreover, by continuity of the best response in δ if α > 4 there is an interval of δ such that
k(δ;α) > 1. The boundaries of this interval (δ(α), δ(α)) are given by the roots of k(δ;α) = 1, which work
out to be

δ(α) , δ(α) =
1

2

(
1±

√
1− (4/α)

)
, α ≥ 4 (B1)

Observe that this interval is symmetric and centred on 1
2 with a width of

δ(α)− δ(α) =
√

1− (4/α) ≥ 0, α ≥ 4 (B2)

If α = 4, we have δ(4) = δ(4) = 1
2 but as α increases the width of the interval (δ(α), δ(α)) expands around

1
2 with the boundaries δ(α)→ 0+ and δ(α)→ 1− as α→∞. Now recall from Lemma 1 that only k ∈ [0, 1]

and δ ∈ [0, 1] are candidates for an equilibrium. So if α > 4 then none of the values of δ ∈ (δ(α), δ(α)) are
candidates for an equilibrium.

Cost of manipulation, c > 0. Now consider the sender’s best response δ(k; c) parameterized by c > 0 and
suppose α > 4. As illustrated in Figure 6, if c < 1 the sender’s best response δ(k; c) is strictly increasing in
k and hence the equilibrium point k∗, δ∗ must be on the “upper branch” where δ∗ > δ(α). But for the same
value of α and instead c > 1 the equilibrium point k∗, δ∗ must be on the “lower branch” where δ∗ < δ(α).

Knife-edge case, c = 1. Now consider the case c = 1 exactly. The sender’s best response is then δ(k; 1) =
(k − k2)/(1 − k2) = k/(1 + k) which takes on the value δ(1; 1) = 1

2 at k = 1. This value δ(1; 1) = 1
2 is in

(δ(α), δ(α)) so that if α > 4 there is no (linear) equilibrium. This case is negligible in the sense that for c
arbitrarily close to 1 there is a unique (linear) equilibrium regardless of α, it is only the case c = 1 that is
troublesome. In particular, if α > 4 and we take c→ 1− the unique equilibrium point k∗, δ∗ is where δ(k; 1−)
intersects k(δ;α) on the “upper branch” where δ∗ > δ(α) but if we take c→ 1+ the unique equilibrium point
k∗, δ∗ is where δ(k; 1+) intersects k(δ;α) on the “lower branch” where δ∗ < δ(α).
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Figure 6: Discontinuity at c = 1 and jump in the amount of manipulation δ∗

The left panel shows the receivers’ best response k(δ;α) for α < 1, α = 4 and α > 4 (blue) and the sender’s best response δ(k; c)
for c = 1− ε, c = 1, and c = 1 + ε (red). For α > 4 and c = 1 there is no (linear) equilibrium. For α > 4, in the limit as c→ 1−

the equilibrium is at k∗ = 1, δ∗ = δ(α) but in the limit as c→ 1+ the equilibrium is at k∗ = 1, δ∗ = δ(α). The right panel shows
the equilibrium manipulation δ∗ as a function of c for α < 1, α = 4 and α > 4. For α ≤ 4, the manipulation δ∗ is continuous
in c. But for α > 4 the manipulation jumps discontinuously at c = 1. In the limit as α → ∞ the boundaries δ(α) → 0+ and
δ(α)→ 1+ so that the manipulation jumps by the maximum possible amount, from δ∗ = 0 if c < 1 to δ∗ = 1 if c > 1.

Jumps in the amount of manipulation. This lack of existence at c = 1 means that, as a function of c,
the equilibrium amount of manipulation δ∗ is discontinuous at c = 1. If α > 4, an ε-reduction from c = 1 + ε
to c = 1− ε causes the sender’s equilibrium manipulation δ∗ to jump up from

lim
c→1+

δ∗ = δ(α) =
1

2

(
1−

√
1− (4/α)

)
(B3)

to

lim
c→1−

δ∗ = δ(α) =
1

2

(
1 +

√
1− (4/α)

)
(B4)

The jump in manipulation as c is perturbed from c = 1+ε to c = 1−ε is present for any α > 4 but the size of
the jump is large when α is large. As α→∞, the manipulation δ∗ jumps all the way from δ∗ = δ(∞) = 0+

to δ∗ = δ(∞) = 1− as c is perturbed from c = 1 + ε to c = 1 − ε. In this sense, a tiny change in costs of
information manipulation can give rise to a very large change in the amount of manipulation being conducted.
As discussed in the main text, Section 5.2 above, this jump in the amount of manipulation is inherited by
the receivers’ loss l∗ which likewise jumps as c is perturbed from c = 1 + ε to c = 1− ε.

Not all the equilibrium outcomes inherit this discontinuity, however. For example, the receivers’ response
k∗ is continuous in c in that k∗(α, c−) = k∗(α, c+). Instead k∗ has a kink, i.e., is not differentiable, at c = 1.
This is easily seen in the special case that α→∞ in which case δ∗ = 1 for c < 1 and δ∗ = 0 for c > 1. In this
case, k∗ = min(c, 1) which is continuous in c but not differentiable at c = 1. The continuity of k∗ is inherited
by the sender’s payoff v∗ which is likewise continuous in c.

What is the economic meaning of c = 1? So given that the equilibrium manipulation can be extremely
sensitive to c in the vicinity of c = 1, what does c = 1 mean? Recall that in the sender’s objective (4) the

gross benefit
∫ 1

0
(ai − θ)2 di has a coefficient normalized to 1. If instead we had written the objective with

b
∫ 1

0
(ai−θ)2 di for some b > 0 then throughout the analysis the relevant parameter would be the cost/benefit

ratio c/b and the point of special significance would be where the cost/benefit ratio is c/b = 1. In this
parameterization, the sender’s equilibrium manipulation is extremely sensitive to changes in either c or b in
the vicinity of c/b = 1. With α high and costs and benefits evenly poised, a small increase in b or small
decrease in c would lead to a very large increase in manipulation.
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C Coefficients sum to one

In this Appendix we show that writing the receivers’ linear strategy as a(xi, z) = kxi + (1 − k)z is without
loss of generality. To see this, suppose that the receivers’ linear strategy is

ai = β0 + β1xi + β2z

for some coefficients β0, β1, β2. We will show that in any linear equilibrium β0 = 0 and β1 + β2 = 1. With
this strategy, the aggregate A is

A = β0 + β1y + β2z

The sender’s problem is then to choose y to maximize∫ 1

0

(ai − θ)2 di− c(y − θ)2 = (β0 + β1xi + β2z − θ)2 +
1

αx
β2
1 − c(y − θ)2

The solution to this problem is
y = γ0 + γ1θ + γ2z

where

γ0 =
β0β1
c− β2

1

(C1)

γ1 =
c− β1
c− β2

1

(C2)

γ2 =
β1β2
c− β2

1

(C3)

But if the sender has the strategy y = γ0 + γ1θ + γ2z, the receivers’ posterior expectation of θ is

E[θ |xi, z] =
γ1αx

γ21αx + αz

(
1

γ1
(xi − γ2z)−

γ0
γ1

)
+

αz
γ21αx + αz

z

=
γ1αx

γ21αx + αz
xi +

αz − γ1αxγ2
γ21αx + αz

z − γ1αx
γ21αx + αz

γ0

And the equilibrium strategy of an individual receiver then satisfies

ai = λE[A |xi, z] + (1− λ)E[θ |xi, z]
= λβ1E[y |xi, z] + (1− λ)E[θ |xi, z] + λβ2z + λβ0

= (λβ1γ1 + (1− λ))E[θ |xi, z] + λ(β1γ2 + β2)z + λ(β1γ0 + β0)

Matching coefficients with ai = β0 + β1xi + β2z we then have

β0 = −(λβ1γ1 + (1− λ))
γ1αx

γ21αx + αz
γ0 + λ(β1γ0 + β0) (C4)

β1 = (λβ1γ1 + (1− λ))
γ1αx

γ21αx + αz
(C5)

β2 = (λβ1γ1 + (1− λ))
αz − γ1αxγ2
γ21αx + αz

+ λ(β1γ1 + β2) (C6)

Now observe that equations (C1) and (C4) together imply that the intercepts are β0 = γ0 = 0. Now observe
from (C2)-(C3) and (C5)-(C6) that γ1 + γ2 = 1 implies β1 + β2 = 1 and vice-versa. So in one equilibrium
the receivers’ strategy takes the form ai = kxi + (1 − k)z where k = β1 and the sender’s strategy takes the
form y = (1− δ)θ + δz where δ = γ2. Hence from (C3) and (C5) we can write

δ =
k − k2
c− k2 , k =

(1− δ)α
(1− δ)2α+ 1

where α := (1− λ)αx/αz. These are the same as the best response formulas equations (20) and (27) in the
main text and from Proposition 1 we know that there is a unique pair k∗, δ∗ satisfying these conditions.
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